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Introduction

R is a popular language and environment that allows powerful and fast manipulation of data, offering many statistical and graphical options.
Graphical representation of data is pivotal when one wants to present scientific results, in particular in publications. R allows you to build top quality graphs (much better than Excel for example).

In this manual, however, we are going to focus on the statistical possibilities of R. Whatever package you use, you need some basic statistical knowledge if only to design your experiments correctly, so there is no way out of it!

And don’t forget: you use stats to present your data in a comprehensible way and to make your point; this is just a tool, so don’t hate it, use it! 

“To consult a statistician after an experiment is finished is often merely to ask him to conduct a post-mortem examination. He can perhaps say what the experiment died of." R. A. Fisher, 1938.
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It’s practically impossible to collect data on an entire population of interest. Instead we examine data from a random sample to provide support for or against our hypothesis. Now the question is: how many samples/participants/data points should we collect? 

Power analysis allows us to determine the sample sizes needed to detect statistical effects with high probability.
Experimenters often guard against false positives with statistical significance tests. After an experiment has been run, we are concerned about falsely concluding that there is an effect when there really isn’t. Power analysis asks the opposite question: supposing there truly is a treatment effect and we were to run our experiment a huge number of times, how often will we get a statistically significant result?
Answering this question requires informed guesswork. We’ll have to supply guesses as to how big our treatment effect can reasonably be for it to be biologically/clinically relevant/meaningful.
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First, the definition of power: probability that a statistical test will reject a false null hypothesis (H0) when the alternative hypothesis (H1) is true. We can also say: it is the probability of detecting a specified effect at a specified significance level. Now ‘specified effect’ refers to the effect size which can be the result of an experimental manipulation or the strength of a relationship between 2 variables. And this effect size is ‘specified’ because prior to the power analysis we should have an idea of the size of the effect we expect to see. The ‘probability of detecting’ bit refers to the ability of a test to detect an effect of a specified size. The recommended power is 0.8 which means we have an 80% chance of detecting an effect if one genuinely exists.

Power is defined in the context of hypothesis testing. A hypothesis (statistical) test tells us the probability of our result (or a more extreme result) occurring, if the null hypothesis is true. If the probability is lower than a pre-specified value (alpha, usually 0.05), it is rejected.
The null hypothesis (H0) corresponds to the absence of effect and the aim of a statistical test is to reject or not H0. A test or a difference are said to be “significant” if the probability of type I error is: α =< 0.05 (max α=1). It means that the level of uncertainty of a test usually accepted is 5%. 

Type I error is the incorrect rejection of a true null hypothesis (false positive). Basically, it is the probability of thinking we have found something when it is not really there. 

Type II on the other hand, is the failure to reject a false null hypothesis (false negative), so saying there is nothing going on whereas actually there is. There is a direct relation between Type II error and power, as Power = 1 – β where β=0.20 usually hence power = 0.8 (probability of drawing a correct conclusion of an effect). We will go back to it in more detail later.
Below is a graphical representation of what we have covered so far. H1 is the alternative hypothesis and the critical value is the value of the difference beyond which that difference is considered significant.
[image: ]
	Statistical decision
	True state of H0

	
	H0 True (no effect)
	H0 False (effect)

	Reject H0
	Type I error (False Positive) α
	Correct (True Positive) 

	Do not reject H0
	Correct (True Negative)
	Type II error (False Negative) β



The ability to reject the null hypothesis depends upon alpha but also the sample size: a larger sample size leads to more accurate parameter estimates, which leads to a greater ability to find what we were looking for. The harder we look, the more likely we are to find it. It also depends on the effect size: the size of the effect in the population: the bigger it is, the easier it will be to find.
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Power analysis allows us to make sure that we have looked hard enough to find something interesting. The size of the thing we are looking for is the effect size. Several methods exist for deciding what effect size we would be interested in. Different statistical tests have different effect sizes developed for them, however the general principle is the same. The first step is to make sure to have preliminary knowledge of the effect we are after. And there are different ways to go about it.

[bookmark: _Toc505779644][bookmark: _Toc518313456][bookmark: _Toc3466030]Effect size determined by substantive knowledge

One way is to identify an effect size that is meaningful i.e. biologically relevant. The estimation of such an effect is often based on substantive knowledge. Here is a classic example: It is hypothesised that 40 year old men who drink more than three cups of coffee per day will score more highly on the Cornell Medical Index (CMI: a self-report screening instrument used to obtain a large amount of relevant medical and psychiatric information) than same-aged men who do not drink coffee. The CMI ranges from 0 to 195, and previous research has shown that scores on the CMI increase by about 3.5 points for every decade of life. Therefore, if drinking coffee caused a similar increase in CMI, it would warrant concern, and so an effect size can be calculated based on that assumption. 

[bookmark: _Toc505779645][bookmark: _Toc518313457][bookmark: _Toc3466031]Effect size determined from previous research

Another approach is to base the estimation of an interesting effect size on previous research, see what effect sizes other researchers studying similar fields have found. Once identified, it can be used to estimate the sample size. 
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Yet another approach is to use conventions. Cohen (author of several books and articles on power analysis) has defined small, medium and large effect sizes for many types of test. These form useful conventions, and can guide you, if you know approximately how strong the effect is likely to be.

Table 1: Thresholds/Convention for interpreting effect size
	Test
	Relevant effect size
	Effect Size Threshold

	
	
	Small
	Medium
	Large

	t-test for means
	d
	0.2
	0.5
	0.8

	F-test for ANOVA
	f
	0.1
	0.25
	0.4

	t-test for correlation
	r
	0.1
	0.3
	0.5

	Chi-square
	w
	0.1
	0.3
	0.5

	2 proportions
	h
	0.2
	0.5
	0.8



Note: The rationale for these benchmarks can be found in Cohen (1988), Rosenthal (1996) later added the classification of very large.

The graphs below give a visual representation of the effect sizes.
[image: ]
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Krzywinski and Altman 2013 (Nature Methods)



Below is a link to a sliding tool providing a visual approach to Cohen’s effect size:
http://rpsychologist.com/d3/cohend/


[image: ]



The point is sample size is always determined to detect some hypothetical difference. It takes huge samples to detect tiny differences but tiny samples to detect huge differences, so you have to specify the size of the effect you are trying to detect.

[bookmark: _Toc505779647][bookmark: _Toc518313459][bookmark: _Toc3466033]So how is that effect size calculated anyway? 

Let’s start with an easy example. If we think about comparing 2 means, the effect size, called Cohen’s d, is just the standardised difference between 2 groups:


[image: ]


The standard deviation is a measure of the spread of a set of values. Here it refers to the standard deviation of the population from which the different treatment groups were taken. In practice, however, this is almost never known, so it must be estimated either from the standard deviation of the control group, or from a 'pooled' value from both groups.

McGraw and Wong (1992) have suggested a 'Common Language Effect Size' (CLES) statistic, which they argue is readily understood by non-statisticians (shown in column 5 of Table 2). This is the probability that a score sampled at random from one distribution will be greater than a score sampled from another. They give the example of the heights of young adult males and females, which differ by an effect size of about 2, and translate this difference to a CLES of 0.92. In other words 'in 92 out of 100 blind dates among young adults, the male will be taller than the female'.


Table2: Interpretation of Effect Size (Robert Coe, 2002)
	Effect Size 
	Percentage of control group below average person in experimental group 
	Rank of person in a control group of 25 equivalent to the average person in experimental group 
	Probability that you could guess which group a person was in from knowledge of their 'score'. 
	Probability that person from experimental group will be higher than person from control, if both chosen at random (=CLES) 

	0.0 
	50% 
	13th 
	0.50 
	0.50 

	0.2 
	58% 
	11th 
	0.54 
	0.56 

	0.5 
	69% 
	8th 
	0.60 
	0.64 

	0.8 
	79% 
	6th 
	0.66 
	0.71 

	1.2 
	88% 
	3rd 
	0.73 
	0.80 

	1.4 
	92% 
	2nd 
	0.76 
	0.84 

	2.0 
	98% 
	1st 
	0.84 
	0.92 




[bookmark: _Toc505779648][bookmark: _Toc518313460][bookmark: _Toc3466034]Doing power analysis

The main output of a power analysis is the estimation of a sufficient sample size. This is of pivotal importance of course. If our sample is too big, it is a waste of resources; if it is too small, we may miss the effect (p>0.05) which would also mean a waste of resources. On a more practical point of view, when we write a grant, we need to justify our sample size which we can do through a power analysis.  Finally, it is all about the ethics of research really which is encapsulated in the UK Home office’s 3 R: Replacement, Refinement and Reduction. The latter in particular relates directly to power calculation as it refers to ‘methods which minimise animal use and enable researchers to obtain comparable levels of information from fewer animals’ (NC3Rs website).

When should we run a power analysis? It depends on what we expect from it: the most common output being the sample size, we should run it before doing the actual experiment (a priori analysis). The correct sequence from hypothesis to results should be:




Hypothesis

Experimental design
Choice of a Statistical test

Power analysis

Sample size

Experiment(s)

(Stat) analysis of the results

Practically, the power analysis depends on the relationship between 6 variables: the significance level, the desired power, the difference of biological interest, the standard deviation (together they make up for the effect size), the alternative hypothesis and the sample size. The significance level is about the p-value (α =< 0.05), the desired power, as mentioned earlier is usually 80% and we already discussed effect size.
Now the alternative hypothesis is about choosing between one and 2-sided tests (= one and 2-tailed tests). This is both a theoretical and a practical issue and it is worth spending a bit of time reflecting on it as it can help understanding this whole idea of power.

We saw before that the bigger the effect size, the bigger the power as in the bigger the probability of picking up a difference.

Going back to one-tailed vs. 2-tailed tests, often there are two alternatives to H0, and two ways the data could be different from what we expect given H0, but we are only interested in one of them. This will influence the way we calculate p. For example, imagine a test finding out about the length of eels. We have 2 groups of eels and for one group, say Group 1, we know the mean and standard deviation, for eels length. We can then ask two different questions. First question: ‘What is the probability of eels in Group 2 having a different length to the ones in Group 1?’ This is called a two-tailed test, as we’d calculate p by looking at the area under both ‘tails’ of the normal curve (See graph below).
And second question: ‘What is the probability of eels in Group 2 being longer than eels in Group 1?’ This is a one-tailed test, as we’d calculate p by looking at the area under only one end of the normal curve. The one-tailed p is just one half of the two-tailed p-value. In order to use a one-tailed test we must be only interested in one of two possible cases, and be able specify which in advance.
[image: ]

If you can reasonably predict the direction of an effect, based on a scientific hypothesis, a 1-tailed test
is more powerful than a 2-tailed test. However, it is not always rigidly applied so be cautious when 1-tailed tests are reported, especially when accompanied by marginally-significant results! And reviewers are usually very suspicious about them.

So far we have discussed 5 out of the 6 variables involved in power analysis: the effect size (difference of biological interest + the standard deviation), the significance level, the desired power and the alternative hypothesis. We are left with the variable which we are actually after when we run a power analysis: the sample size.

To start with, we saw that the sample size is related to power but how does it work? It is best explained graphically.
The graph below on the left shows what happens with a sample of n=50, the one of the right what happens with a bigger sample (n=270). The standard deviation of the sampling distribution (= SEM so standard error of the mean) decreases as N increases. This has the effect of reducing the overlap between the H0 and H1 distributions. Since in reality it is difficult to reduce the variability inherent in data, or the contrast between means, the most effective way of improving power is to increase the sample size.
[image: ][image: ][image: ]


Krzywinski and Altman 2013 (Nature Methods)

So the bigger the sample, the bigger the power and the higher the probability to detect the effect size we are after. 

[bookmark: _Toc505779649][bookmark: _Toc518313461][bookmark: _Toc3466035]The problem with overpower

As we saw, power and effect size are linked so that the bigger the power the smaller the effect size that can be detected, as in associated with a significant p-value. The problem is that there is such a thing as overpower. Studies or experiments which produce thousand or hundreds of thousands of data, when statistically analysed will pretty much always generate very low p-values even when the effect size is minuscule. There is nothing wrong with the stats, what matters here is the interpretation of the results. 


[image: O:\Training\Introduction to Power Analysis\fig for overpower.png]

When the sample size is able to detect differences much finer than the expected effect size, a difference that is correctly statistically distinct is not practically meaningful (and from the perspective of the "end-user" this is effectively a "false positive" even if it's not a statistical one). Beyond the ethical issues associated with overpower, it all comes back to the importance of having in mind a meaningful effect size before running the experiments.


[bookmark: _Toc505779650][bookmark: _Toc518313462][bookmark: _Toc3466036]Sample size (n): biological vs. technical replicates (=repeats)

When thinking about sample size, it is very important to consider the difference between technical and biological replicates. For example, technical replicates involve taking several samples from one tube and analysing it across multiple conditions. Biological replicates are different samples measured across multiple conditions. When the experimental unit is an animal, it is pretty easy to make the distinction between the 2 types of replicates.
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To run proper statistical tests so that we can make proper inference from sample to general population, we need biological samples. Staying with mice, if we randomly select one white and one grey mouse and measure their weights, we will not be able to draw any conclusions about whether grey mice are, say, heavier in general. This is because we only have two biological samples. 

If we repeat the measurements, let’s say we weigh each mouse five times then we will have ten different measurements. But this cannot be used to prove that grey mice are heavier than white mice in general, we still have only looked at one white and one grey mouse. Using the terminology above, the five measurements of each mouse are technical replicates. 
What we need to do is to select five different white mice and five different grey mice. Then we would have more than two biological samples and be able to say if there is a statistical difference between white and grey mice in general.

So the concept of biological replicates is quite easy to understand when dealing with animals. But what is "n" in cell culture experiments? 

(The examples below are extracts from Statistics for Experimental Biologists)
One of the difficulties in analyzing cell culture experiments is determining what the experimental unit is, or what counts as a replicate, or "n". This is easy when cells are derived from different individuals, for example if a blood sample is taken from 20 individuals, and ten serve as a control group while the other ten are the treated group. It is clear that each person is a biological replicate and the blood samples are independent of each other, so the sample size is 20. However, when cell lines are used, there isn't any biological replication, only technical replication, and it is important to have this replication at the right level in order to have valid inferences. The examples below will mainly discuss the use of cell lines. In the figures, the tubes represent a vial of frozen cells, the dishes could be separate flasks, separate culture dishes, or different wells in a plate, and represent cells in culture and the point at which the treatment is applied. The flat rectangular objects could represent glass slides, microarrays, lanes in a gel, or wells in a plate, etc. and are the point at which something gets measured. The control groups are grey and the treated groups are red. 

[bookmark: _Toc505779651][bookmark: _Toc518313463][bookmark: _Toc3466037]Design 1: As bad as it can get

In this experiment a single vial is thawed, cells are divided into two culture dishes and the treatment (red) is randomly applied to one of the two dishes. The cells are allowed to grow for a period of time, and then three samples are pipetted from each dish onto glass slides, and the number of cells are counted (yes there are better ways to count cells, the main point is that from each glass slide we get just one value, in this case the total number of cells). So after the quantification, there are six values--the number of cells on the three control and three treated slides. So what is the sample size--there was one vial, two culture dishes, and six glass slides? 
[image: ]

The answer, which will surprise some people, is one, and most certainly not six. The reason for this has to do with the lack of independence between the three glass slides within each condition. A non-laboratory example will clarify why. Suppose I want to know if people gain weight over the Christmas holidays, so I find one volunteer and measure their weight three times on the morning of Dec 20th (within a few minutes of each other). Then, on the morning of Jan 3rd I measure this same person's weight three times. So I have six data points in total, and I can calculate means, SEMs, 95%CIs, and can even do a t-test. But with these six values, can I address the research question? No, because the research question was do people gain weight over the holidays, but I have observations on only one person, and taking more and more observations on this single person will not enable me to make better estimates of weight changes in people. The key point is that the variability from slide-to-slide within a condition is only pipetting error (just like measuring someone's weight three times within a few minutes of each other), and therefore those values do not constitute a sample size of three in each condition.

[bookmark: _Toc505779652][bookmark: _Toc518313464][bookmark: _Toc3466038]Design 2: Marginally better, but still not good enough

In this modified experiment, the vial of cells is divided into six separate culture dishes, and then cells from each culture dish are pipetted onto a single glass slide. Similar to the previous experiment, there are six values after quantifying the number of cells on each slide. So now is the sample size six? 
[image: ]

Unfortunately not, because even though the cells were grown in separate dishes, they are not really independent because they were all processed on the same day, they were all sitting in the same medium, they were all kept in the same incubator at the same time, etc. Cells in two culture dishes from the same stock and processed identically do not become fully independent just because a bit of plastic has been placed between them. However, one might expect some more variability within the groups compared to the first design because the samples were split higher up in the hierarchy, but this is not enough to ensure the validity of the statistical test. To keep with the weight gain analogy, you can think of this as measuring a person's weight in the morning, afternoon, and evening on the same day, rather than taking measurements a few minutes apart. The three measurements are likely to be a bit more variable, but still highly correlated.

[bookmark: _Toc505779653][bookmark: _Toc518313465][bookmark: _Toc3466039]Design 3: Often, as good as it can get

In this design, a vial of cells is thawed, divided in two culture dishes, and then eventually one sample from each dish is pipetted onto a glass slide. The main (and key) difference is that the whole procedure is repeated three separate times. Here, they are listed as Day 1, 2, and 3, but they need not be consecutive days and could be weeks or even months apart. This is where independence gets introduced, even though the same starting material is used (i.e. same cell line), the whole procedure is done at one time, and then repeated at another time, and then a third time. There are still six numbers that we get out of the experiment, but the variability now includes the variability of doing the experiment more than once. Note that this is still technical variability, but it is done at the highest level in the hierarchy, and the results of one day are (mostly) independent of the results of another day. And what is the sample size now?
[image: ]

The "independent" aspect of the experiment are the days, and so n = 3. Note, that the two glass slides from the same day can (and should) be treated as paired observations, and so it is the difference between treated and control within each day that is of interest (a paired-samples t-test could be used). An important technical point is that these three replications should be made as independent as possible. This means that it is better to complete the first experiment before starting the second. For example, if the cells will be grown in culture for a week, it is better to do everything over three weeks rather than starting the first experiment on a Monday, the next on Tuesday, and the third on Wednesday. If the three experiments are mostly done in parallel, they will not be as independent as when done back-to-back. Ideally, different media should be made up for each experiment, but this is where reality often places constraints on what is statistically optimal. 
Continuing with the weight-gain example, this design is similar to measuring a person's weight before and after the holidays over three consecutive years. This is still not ideal for answering the research question (which was determining whether people gain weight over the holidays), but if we have only one volunteer at our disposal then this is the best we can do. But now at least we can see whether the phenomenon is reproducible over multiple years, which will give us a bit more confidence that the phenomenon is real. We still don't know about other people, and the best we could do was repeated experiments on this one person. 

[bookmark: _Toc505779654][bookmark: _Toc518313466][bookmark: _Toc3466040]Design 4: The ideal design

Like many ideals, the ideal experiment is often impossible to attain. With cell lines, there are no biological replicates, and so Design 3 is the best that can be done. The ideal design would have biological replicates (i.e. cells from multiple people or animals), and in this case the experiment need only be done once. I hope it is now clear (and after reading the two references) why Design 1 and Design 2 do not provide any reason to believe that the results will be reproducible. Some people may object that it is a weak analogy, and say that they are only interested in whether compound X increases phosphorylation of protein Y, and are not interested in other proteins, other compounds, other cell lines, etc., and so Design 1 or 2 are sufficient. Unfortunately, this is not the case and it has to do with lack of independence, which is a fundamental assumption of the statistical analysis (see Lazic, 2010 and references therein). But even if you don't appreciate the statistical arguments, this analogy might help: if you claim to be a superstar archer and hit the bullseye to prove it, this is certainly evidence that you have some skill, but let's see if you can do it three times in a row.

[image: ]

[bookmark: _Toc505779655][bookmark: _Toc518313467][bookmark: _Toc3466041]Replication at multiple levels

The analysis of such cell culture experiments in many published studies is inappropriate, even if there were replicate experiments. You will probably have noticed the hierarchical nature of the data: the experiment can be conducted on multiple days, there can be replications of cell cultures within days, there can be replications of more than one glass slide per culture dish, and often multiple measurements within each glass slide can be taken (in this example the total number of cells was measured, but the soma size of 20 randomly selected cells on each glass slide could have been measured, which would give many more data points). This hierarchical structure needs to be respected during the analysis, either by using a hierarchical model (also known as a mixed-effects or multi-level model) or by averaging the lower level values (see Lazic, 2010). Note that it is NOT appropriate to simply enter all of the numbers into a statistics program and run a simple t-test or ANOVA. It is really important to remember that you should never mix biological and technical replicates.

Two more things to note. First, it is possible to have replication at multiple levels, in the previous examples replication was only introduced at one level at a time to illustrate the concepts. However, it is often of interest to know at which level most of the variation comes from, as this will aid in designing future experiments. Cost considerations are also important, if samples are difficult to obtain (e.g. rare clinical samples) then technical replication can give more precise estimates for those precious few samples. However, if the samples are easy to get and/or inexpensive, and you want to do a microarray study (substituting expensive arrays for the glass slides in the previous examples), then there is little point in having technical replicates and it is better to increase the number of biological replicates. Second, if you want to increase the power of the analysis, you need to replicate the "days", not the number of culture dishes within days, or the number of glass slides within a culture dish, or the number of cells on a slide. Alternatively, if biological replicates are available, increasing these will increase power, but not more technical replicates. 

Going back to the basic idea behind the power analysis that if you fix any five of the variables, a mathematical relationship can be used to estimate the sixth. The variables are all linked and will vary as shown in the following diagram.

[image: M:\Work\GraphPad course\GraphPad 6 Course\6 power variables relationship.png]

Now here is the good news, there are packages that can do the power analysis for us … providing of course we have some prior knowledge of the key parameters. 

We are going to go through 2 examples of power calculations: 
· Comparing 2 proportions
· Comparing 2 means



[bookmark: _Toc505779656][bookmark: _Toc518313468][bookmark: _Toc3466042]Examples of power calculation

We have previously mainly mentioned quantitative variables but it is also possible to think about power in the context of qualitative variable. All statistical tests, regardless of the type of outcome variables they are dealing with, are associated with a measure of power. Statistics are about confidence in the inferential potential of the results of an experiment so when comparing 2 proportions the question becomes: What makes me believe that 35% is different from 50%? The answer is: a sample big enough, and the ‘big enough’ is estimated by a power analysis. What makes me believe that 35% is statistically different from 45%? The answer is: a bigger sample!

[bookmark: _Toc505779657][bookmark: _Toc518313469][bookmark: _Toc3466043]Comparing 2 proportions

(Data from: http://www.sciencealert.com/scientists-are-painting-eyes-on-cows-butts-to-stop-lions-getting-shot)

[image: ]

Scientists have come up with a solution that will reduce the number of lions being shot by farmers in Africa - painting eyes on the butts of cows. It sounds a little crazy, but early trials suggest that lions are less likely to attack livestock when they think they’re being watched - and fewer livestock attacks could help farmers and lions co-exist more peacefully.

Pilot study over 6 weeks:  3 out of 39 unpainted cows were killed by lions, none of the 23 painted cows from the same herd were killed.
· Do you think the observed effect is meaningful to the extent that such a ‘treatment’ should be applied? Consider ethics, economics, conservation …
· Run a power calculation to find out how many cows should be included in the study.

We will be using the function below: 

power.prop.test(n=NULL, p1=NULL, p2=NULL, sig.level=NULL, power=NULL, 
alternative=c("two.sided", "one.sided")

Exactly one of the parameters n, p1, p2, power and sig.level must be passed as NULL, and that parameter is determined from the others. “two-sided” is the default.

power.prop.test(n=NULL, p1=3/39, p2=0, sig.level=0.05, power=0.8, 
alternative="two.sided")

[image: ]

To be able to pick such a difference between the 2 groups, as in to reach significance, we will need about 97 cows in each group. In other words: if we want to be at least 80% confident to spot a treatment effect, if indeed there is one, we will need about 200 cows altogether. 

Always remember, power calculations are guessing exercises, the sample sizes found are never absolute. Our data might show an effect a bit bigger  or smaller  than expected. By doing a power calculation, providing the effect size we are after is meaningful, we want to know if we can afford to run the experiment. Afford in all possible ways: money, time, space … and ethically. In our case here, we wanted to know how many-ish animals were needed:90-ish happens to be OK but if it had been 900-ish, maybe the cost-benefit of the experiment would not have been worth it.

One last thing: be careful with small samples sizes. If our power calculation tells you that we need n=3 or 4, try to add one or 2 experimental units if you possible. With n=3, we cannot afford any mistake, so if something goes wrong with one of our animals for instance, we will end up with n=2 and be in trouble statwise.

[bookmark: _Toc518313470][bookmark: _Toc3466044]Comparing 2 means

(Data from ‘Discovering Stats with SPSS’ by Andy Field)

[image: The eyes of a New Zealand nursery web spider, Dolomedes minor.]

Pilot study: 10 arachnophobes were asked to perform 2 tasks: 
[image: ]Task 1: Group1 (n=5): to play with a big hairy tarantula spider with big fangs and an evil look in its eight eyes. 
Task 2: Group 2 (n=5): to look only at pictures of the same hairy tarantula. 

Anxiety scores were measured for each group (0 to 100). 
· Use R to calculate the values for a power calculation
· Enter the data in R
· Hint: you will need data.frame() and apply()
· Run a power calculation to find out how many subjects should be included in the study.

[image: ]




[bookmark: _Toc505779661][bookmark: _Toc518313471][bookmark: _Toc3466045]Unequal sample sizes

So far we have only considered balanced design as in groups of equal sizes. However, more often than not, scientists have to deal with unequal sample sizes for a wide variety of reasons. The problem is that there is not a simple trade-off as in if one needs 2 groups of 30 for a particular comparison, going for 20 and 40 will be associated with decreased power.
The best approach is to run the power calculation based on a balanced design and then apply a correction. The tricky bit is that we need to have an idea of the unbalance and express it as a ratio (k) of the 2 sample sizes.
The formula to correct for unbalanced design is then quite simple.

With k, the ratio of the samples sizes in the 2 groups after adjustment (=n1/n2)

[image: ]


[bookmark: _Toc505779662][bookmark: _Toc518313472][bookmark: _Toc3466046]Power calculation for non-parametric tests

Nonparametric tests are used when we are not willing to assume that our data come from a Gaussian distribution. Commonly used nonparametric tests are based on ranking values from low to high, and then looking at the distribution of sum-of-ranks between groups.
Now if we want to run a proper power calculation for non-parametric tests, we need to specify which kind of distribution we are dealing with. This would imply more advanced approach to the data and it is not the purpose of this manual.

But if we don’t know the shape of the underlying distribution, we cannot do proper sample size calculation. So we have a problem here.

Fortunately, there is a way to have a rough idea of the sample size needed. First of all, non-parametric tests are usually said to be less powerful than their parametric counterparts. It is not always true and depending on the nature of the distribution, the non-parametric tests might actually require fewer subjects. And when they need more, they never require more than 15% additional subjects providing these 2 assumptions are true: we are looking at reasonably high numbers of subjects (say at least n=30) and the distribution is not too unusual. 
So the rule of thumb is: if we plan to use a nonparametric test, we compute the sample size required for a parametric test and add 15%.



[bookmark: _Toc3466047]Chapter 2: Some key concepts
[bookmark: _Toc429477882][bookmark: _Toc430709438][bookmark: _Toc3466048][bookmark: _Toc430709437]A bit of theory: the null hypothesis and the error types.

The null hypothesis (H0) corresponds to the absence of effect (e.g.: the animals rewarded by food are as likely to line dance as the ones rewarded by affection) and the aim of a statistical test is to accept or to reject H0. As mentioned earlier, traditionally, a test or a difference are said to be “significant” if the probability of type I error is: α =< 0.05 (max α=1). It means that the level of uncertainty of a test usually accepted is 5%. It also means that there is a probability of 5% that we may be wrong when we say that our 2 means are different, for instance, or we can say that when we see an effect we want to be at least 95% confident that something is significantly happening.

	Statistical decision
	True state of H0

	
	H0 True (no effect)
	H0 False (effect)

	Reject H0
	Type I error (False Positive)
	Correct (True Positive)

	Do not reject H0
	Correct (True Negative)
	Type II error (False Negative)



Tip: if our p-value is between 5% and 10% (0.05 and 0.10), I would not reject it too fast. It is often worth putting this result into perspective and ask ourselves a few questions like: 
· what the literature says about what am I looking at? 
· what if I had a bigger sample?
· have I run other tests on similar data and were they significant or not? 

The interpretation of a border line result can be difficult so it is important to look at the whole picture.

The specificity and the sensitivity of a test are closely related to Type I and Type II errors.

Specificity = Number of True Negatives / (Number of False Positives + Number of True Negatives).  A test with a high specificity has a low type I error rate.

Sensitivity = Number of True Positives / (Number of False Negatives + Number of True Positives).   A test with a high sensitivity has a low type II error rate.


[bookmark: _Toc518035166][bookmark: _Toc3466049]A bit of theory: Statistical inference

This is such an obvious concept that people tend to forget about it. The whole point of looking at a sample of data and analysing it is because we assume that that sample is a fair representation of the population it is coming from. As such, the findings from the sample can be inferred to that population, they can be generalised.
With that in mind, if we observe a difference between 2 groups in our sample, we get excited because we think that what we are observing can be what is happening in the general population, as in ‘for real’.
Now when we observe a difference, we get excited if that difference is meaningful or, rather, we should. We should only get excited by a difference which is biologically relevant in the context of our study, and not by any difference.
So, let’s say that the difference is meaningful, the next question is: is it real? And for that we need to apply a statistical test, which will allow us to quantify the confidence we have in our difference. All statistical tests produce a statistic (e.g. t-value, F …) and statistics are all about the difference observed but also about the variability of the data (the noise) and the sample size. We need all three to know how confident we are, to be able to infer from our sample to the population. 
Then the final question is: is the statistic big enough? Because it will almost never be 0, there will always be a difference, but when does this difference start to be real, meaningful, significant? Statistical tests allow us to draw a line, the critical value, beyond which the result is significant, the difference is real.


[image: ]









[bookmark: _Toc518035167][bookmark: _Toc3466050]The signal-to-noise ratio

[image: ]

Statistics are all about understanding and controlling variation. In pretty much all quantitative tests, the statistic is a variation on the theme of the so-called signal-to-noise ratio, in effect the difference over the variability. We want this ratio to be as big as possible because if the noise is low then the signal is detectable but if the noise (i.e. inter-individual variation) is large then the same signal will not be detected. So in a statistical test, the signal-to-noise ratio determines the significance.































[bookmark: _Toc158524923][bookmark: _Toc158525643][bookmark: _Toc429477883][bookmark: _Toc430709439][bookmark: _Toc3466051]Chapter 3: Descriptive statistics

When it comes to quantitative data, more tests are available but assumptions must be met before applying them. In fact, there are 2 types of stats tests: parametric and non-parametric ones. Parametric tests have 4 assumptions that must be met for the tests to be accurate. Non-parametric tests are based on ranks and they make few or no assumptions about populations parameters like normality (e.g. Mann-Whitney test).

[bookmark: _Toc429477884][bookmark: _Toc430709440][bookmark: _Toc3466052]3-1 A bit of theory: descriptive stats 

[bookmark: _Toc429477886][bookmark: _Toc430709442][bookmark: _Toc3466053]The median: The median is the value exactly in the middle of an ordered set of numbers.

Example 1: 18 27 34 52 54 59 61 68 78 82 85 87 91 93 100, Median = 68
Example 2: 18 27 27 34 52 52 59 61 68 68 85 85 85 90, Median = 60


[bookmark: _Toc429477885][bookmark: _Toc430709441][bookmark: _Toc3466054]The mean (or average) µ = average of all values in a column

It can be considered as a model because it summaries the data.
- Example: number of friends of each member of a group of 5 lecturers: 1, 2, 3, 3 and 4
Mean: (1+2+3+3+4)/5 = 2.6 friends per lecturer: clearly a hypothetical value!
Now if the values were: 1, 1, 1, 1 and 9 the mean would also be 2.6 but clearly it would not give an accurate picture of the data. So, how can we know that it is an accurate model? We look at the difference between the real data and our model. To do so, we calculate the difference between the real data and the model created and we make the sum so that we get the total error (or sum of differences).














[bookmark: OLE_LINK8][bookmark: OLE_LINK9]∑(xi - µ) = (-1.6) + (-0.6) + (0.4) + (0.4) + (1.4) = 0      And we get no errors !

Of course: positive and negative differences cancel each other out. So to avoid the problem of the direction of the error, we can square the differences and instead of sum of errors, we get the Sum of Squared errors (SS).
- In our example: SS = (-1.6)2 + (-0.6)2 + (0.4)2 + (0.4)2 + (1.4)2 = 5.20




[bookmark: _Toc429477887][bookmark: _Toc430709443][bookmark: _Toc3466055]The variance

This SS gives a good measure of the accuracy of the model but it is dependent upon the amount of data: the more data, the higher the SS. The solution is to divide the SS by the number of observations (N). As we are interested in measuring the error in the sample to estimate the one in the population, we divide the SS by N-1 instead of N and we get the variance (S2) = SS/N-1
- In our example: Variance (S2) = 5.20 / 4 = 1.3
Why N-1 instead N?
If we take a sample of 4 scores in a population they are free to vary but if we use this sample to calculate the variance, we have to use the mean of the sample as an estimate of the mean of the population. To do that we have to hold one parameter constant.

- Example: mean of the sample is 10 
We assume that the mean of the population from which the sample has been collected is also 10. If we want to calculate the variance, we must keep this value constant which means that the 4 scores cannot vary freely:
- If the values are 9, 8, 11 and 12 (mean = 10) and if we change 3 of these values to 7, 15 and 8 then the final value must be 10 to keep the mean constant.
If we hold 1 parameter constant, we have to use N-1 instead of N. It is the idea behind the degree of freedom: one less than the sample size.


[bookmark: _Toc429477888][bookmark: _Toc430709444][bookmark: _Toc3466056]The Standard Deviation (SD)

The problem with the variance is that it is measured in squared units which is not very nice to manipulate. So for more convenience, the square root of the variance is taken to obtain a measure in the same unit as the original measure: the standard deviation.

- S.D. = √(SS/N-1) = √(S2), in our example: S.D. =  √(1.3) = 1.14

So you would present your mean as follows: µ = 2.6 +/- 1.14 friends.

The standard deviation is a measure of how well the mean represents the data or how much our data are scattered around the mean.

- small S.D.: data close to the mean: mean is a good fit of the data (graph on the left)
- large S.D.: data distant from the mean: mean is not an accurate representation (graph on the right)











[bookmark: _Toc429477889][bookmark: _Toc430709445]

[bookmark: _Toc3466057]Standard Deviation vs. Standard Error

Many scientists are confused about the difference between the standard deviation (S.D.) and the standard error of the mean (S.E.M. = S.D. / √N).
- The S.D. (graph on the left) quantifies the scatter of the data and increasing the size of the sample does not decrease the scatter (above a certain threshold).
- The S.E.M. (graph on the right) quantifies how accurately we know the true population mean, it’s a measure of how much we expect sample means to vary. So the S.E.M. gets smaller as our samples get larger: the mean of a large sample is likely to be closer to the true mean than is the mean of a small sample.

[image: ]













A big S.E.M. means that there is a lot of variability between the means of different samples and that our sample might not be representative of the population.
A small S.E.M. means that most samples means are similar to the population mean and so our sample is likely to be an accurate representation of the population.

Which one to choose?

- If the scatter is caused by biological variability, it is important to show the variation. So it is more appropriate to report the S.D. rather than the S.E.M. Even better, we can show in a graph all data points, or perhaps report the largest and smallest value.
- If we are using an in vitro system with theoretically very little biological variability, the scatter can only result from experimental imprecision (no biological meaning). It is more sensible then to report the S.E.M. since the S.D. is less useful here. The S.E.M. gives the readers a sense of how well we have determined the mean.
Choosing between SD and SEM also depends on what we want to show. If we just want to present our data on a descriptive purpose then we go for the SD. If we want the reader to be able to infer an idea of significance then you should go for the SEM or the Confidence Interval (see below). We will go into a bit more detail later.


[bookmark: _Toc429477890][bookmark: _Toc430709446][bookmark: _Toc3466058]Confidence interval

The confidence interval quantifies the uncertainty in measurement. The mean we calculate from our sample of data points depends on which values we happened to sample. Therefore, the mean we calculate is unlikely to equal the true population mean. The size of the likely discrepancy depends on the variability of the values and the sample size. If we combine those together, we can calculate a 95% confidence interval (95% CI), which is a range of values. If the population is normal (or nearly so), there is a 95% chance that the confidence interval contains the true population mean.
95% of observations in a normal distribution lie within +/- 1.96*SE

One other way to look at error bars:

[image: ]











	Error bars
	Type
	Description

	Standard deviation (SD)
	Descriptive
	Typical or average difference between the data points and their mean.

	Standard error (SEM)
	Inferential
	A measure of how variable the mean will be, if you repeat the whole study many times.

	Confidence interval (CI), usually 95% CI
	Inferential
	A range of values you can be 95% confident contains the true mean.


From Geoff Cumming et al.

If we want to compare experimental results, it could be more appropriate to show inferential error bars such as SE or CI rather than SD. If we want to describe our sample, for instance its normality, then the SD would be the one to choose.

However, if n is very small (for example n=3), rather than showing error bars and statistics, it is better to simply plot the individual data points.In the same way, you can estimate statistical significance using the overlap rule for 95% CI bars.



[image: ]In the same way, you can estimate statistical significance using the overlap rule for 95% CI bars.


[image: ]We can estimate statistical significance using the overlap rule for SE bars.



[image: ]In the same way, you can estimate statistical significance using the overlap rule for 95% CI bars.



[bookmark: _Toc429477891][bookmark: _Toc430709447][bookmark: _Toc3466059] 3-2 A bit of theory: Assumptions of parametric data

When we are dealing with quantitative data, the first thing we should look at is how they are distributed, what they look like. The distribution of our data will tell us if there is something wrong in the way we collected them or enter them and it will also tell we what kind of test we can apply to make them say something.
T-test, analysis of variance and correlation tests belong to the family of parametric tests and to be able to use them our data must comply with 4 assumptions.


1) The data have to be normally distributed (normal shape, bell shape, Gaussian shape). 
Example of normally distributed data:

[image: Raven egg data with normal distribution]


There are 2 main types of departure from normality:

- Skewness: lack of symmetry of a distribution

[image: ][image: ]

- Kurtosis: measure of the degree of ‘peakedness’ in the distribution

The two distributions below have the same variance approximately the same skew, but differ markedly in kurtosis.
[image: Kurtosis]
[image: kurt1]
 

2) Homogeneity in variance: The variance should not change systematically throughout the data. 

3) Interval data: The distance between points of the scale should be equal at all parts along the scale

4) Independence: Data from different subjects are independent so that values corresponding to one subject do not influence the values corresponding to another subject. Basically, it means it means one measure per subject. There are specific designs for repeated measures experiments.


[bookmark: _Toc3466060][bookmark: _Toc429477892][bookmark: _Toc430709448]Chapter 4: Comparing 2 means

[bookmark: _Toc3466061]How can we check that our data are parametric/normal?

Let’s try it through an example.

[bookmark: _Toc372614961][bookmark: _Toc387305701][bookmark: _Toc429477893][bookmark: _Toc430709449][bookmark: _Toc3466062][bookmark: _Toc158524924][bookmark: _Toc158525644]Example (File: coyote.csv) csv as in ‘comma-separated values’

We want to know if male coyotes are bigger than female coyotes. Of course, before doing anything else, we design our experiment and we are told that to compare 2 samples we need to apply a t-test (we will explain this test later). So basically we are going to catch coyotes and hopefully we will manage to catch males and females. Now, the tricky bit here is how many coyotes do we need?

[image: ]

[bookmark: _Toc429477894][bookmark: _Toc430709450]
[bookmark: _Toc3466063]4-1 Power analysis with a t-test

Let’s say, we don’t have data from a pilot study but we have found some information in the literature. In a study run in similar conditions as in the one we intend to run, male coyotes (n=20) were found to measure on average: 92cm+/- 7cm (SD). We expect a 5% difference between genders with a similar variability in the female sample.

The function in this case will be:

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = NULL, power = NULL, type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"))

mean1<-92
mean2<-87.4 (5% less than 92cm)

delta<-92-87.4
sd<-7


So now:
power.t.test(delta=92-87.4, sd = 7, sig.level = 0.05, power = 0.8)

The default ‘Type’ is “two.sample” so no need to specify it.

[image: ]

We need a sample size of n=76 (2*38).

Once the data are collected, we check for normality.

[image: ]Though normality tests are good, the best way to get a really good idea of what is going on is to plot our data. When it comes to normality, there are 3 ways to plot our data: the box plot, the scatter plot and the histogram. We are going to do them all with R.

To get the data in R we go: 

coyote<-read.csv("coyote.csv",header=TRUE)
View(coyote) or head(coyote)

Now let’s start with the stripchart. 


stripchart(coyote$length~coyote$gender,vertical=TRUE, method="jitter", las=1, ylab="Lengths",pch=16, col=c("darkorange","purple"), cex=1.5, at=c(1.2,1.8))

[image: ][image: ]
[image: ]

Now you may want to improve this graph by adding the groups’means. 

length.means <- tapply(coyote$length,coyote$gender,mean) 
loc.strip<- c(1.2,1.8)
segments(loc.strip-0.15,length.means, loc.strip+0.15, length.means, col="black", lwd=3)

[image: ]

One other way to explore the data is the boxplot.

boxplot(coyote$length~coyote$gender, col=c("orange","purple"))

[image: ]











The anatomy of a boxplot is explained in the graph below. It is very important that you know how a box plot is built. It is rather simple and it will allow us to get a pretty good idea about the distribution of your data at a glance. 
If the distribution is normal-ish then the box plot should be symmetrical-ish and if both (like in our case) are of the same size-ish, then we can be confident that the variances are about the same.

[image: ]

Regarding the outliers, there is really no right or wrong attitude. If there is a technical issue or an experimental problem, you should remove it, of course, but if there is nothing obvious it is up to you. I would always recommend keeping outliers if we can; we can run the analysis with and without it for instance and see what effect it has on the p-value. If the outcome is still consistent with our hypothesis, then we should keep it. If not, then it is between you and your conscience!

Below we can see the relationship between box plot and histogram.
[image: File:Boxplot vs PDF.png]





















Beanplots can be more informative than boxplot in terms of ‘hidden’ distribution especially with big datasets but they do not identify outliers. 

[image: ]

Beanplots look quite cool!

beanplot(coyote$length~coyote$gender, las=1,
ylab="Length (cm)")  ## beanplot package ##

[image: ]





Finally, the histograms.

par(mfrow=c(1,2))
hist(coyote[coyote$gender=="male",]$length,main="Male", xlab="Length",col="lightgreen")
hist(coyote[coyote$gender=="female",]$length, main="Female", xlab="Length",col="tomato1")

[image: ]

So from the graphs we have plotted, we can tell that the first and second assumptions are likely to be met: the data seem normal enough (symmetry of the graphs) and the variability seems comparable between groups (spread of the data). My preference goes to the box plot as it tells you in one go anything you need to know: where you are with the first 2 assumptions and it shows you outliers.

Still we may come across cases where it is not that obvious so can ask R to test for the normality (Shapiro-Wilk test or D’agostino and Pearson tests) and homogeneity of variance (Levene test). Here we are going to use 2 new functions: shapiro() which gives access to a normality test (Shapiro-Wilk test ) and tapply() which allows to do it for males and females separately in one go.

tapply(coyote$length,coyote$gender, shapiro.test)

[image: ]

There is no significant departure from normality for females (p=0.316) or males (p=0.819).

That was the first assumption; now we can check the second assumption (homogeneity of variances) using the Levene test.
Second assumption:
leveneTest(coyote$length, coyote$gender,centre=mean) ## car package ##
[image: ]
So, good again but not surprising news: the variances of the 2 genders do not differ significantly (p=0.698).
Don't be too quick to switch to nonparametric tests. While they do not assume Gaussian distributions, these tests do assume that the shape of the data distribution is the same in each group. So if your groups have very different standard deviations and so are not appropriate for a parametric test, they should not be analysed with its non-parametric equivalent either. However, parametric tests like ANOVA and t-tests are rather robust, especially when the samples are not too small so you can get away with small departure from normality and small differences in variances. Often the best approach is to transform the data and logarithms or reciprocals does the trick, restoring equal variance. 
Finally, we may want to represent the data as a classical bar chart. To achieve that, we can type the lines below. 

[bookmark: _Toc158524926][bookmark: _Toc158525646]bar.length<-barplot(length.means,
col=c("darkslategray1","darkseagreen1"),	
ylim=c(50,100),
beside=TRUE, 
xlim=c(0,1),
width=0.3,
ylab="Mean length",las=1, 
xpd=FALSE, 
las=1) 

## plotrix package ##
length.se<-tapply(coyote$length,coyote$gender,std.error)

Now to plot the error bars, we are going to use arrow(. We need to specify the coordinates (x,y). barplot () returns the values of the centre of the bars.

bar.length

[image: ]




[image: ]arrows(x0=bar.length, 
y0=length.means-length.se, 
x1=bar.length, 
y1=length.means+length.se, 
length=0.3, 
angle=90,
code=3)

 [image: ]
[bookmark: _Toc429477895][bookmark: _Toc430709451][bookmark: _Toc3466064]A bit of theory: the t-test 

The t-test assesses whether the means of two groups are statistically different from each other. This analysis is appropriate whenever you want to compare the means of two groups.

[image: stat_t1]
The figure above shows the distributions for the treated (blue) and control (green) groups in a study. Actually, the figure shows the idealized distribution. The figure indicates where the control and treatment group means are located. The question the t-test addresses is whether the means are statistically different.
What does it mean to say that the averages for two groups are statistically different? Consider the three situations shown in the figure below. The first thing to notice is that the difference between the means is the same in all three. But, we should also notice that the three situations don't look the same -- they tell very different stories. The top example shows a case with moderate variability of scores within each group. The second situation shows the high variability case. The third shows the case with low variability. Clearly, we would conclude that the two groups appear most different or distinct in the bottom or low-variability case. Why? Because there is relatively little overlap between the two bell-shaped curves. In the high variability case, the group difference appears least striking because the two bell-shaped distributions overlap so much.
[image: stat_t2]


This leads us to a very important conclusion: when we are looking at the differences between scores for two groups, we have to judge the difference between their means relative to the spread or variability of their scores. The t-test does just that.
The formula for the t-test is a ratio. The top part of the ratio is just the difference between the two means or averages. The bottom part is a measure of the variability or dispersion of the scores. We can see below the formula for the t-test and how the numerator and denominator are related to the distributions. 
[image: ]

The t-value will be positive if the first mean is larger than the second and negative if it is smaller. 
There are 2 types of t-test: Independent and Paired. The choice between the 2 is very intuitive. If we measure a variable in 2 different populations, we choose the independent t-test as the 2 populations are independent from each other. If we measure a variable 2 times in the same population, we go for the paired t-test. 
So, say we want to compare the weights of 2 breeds of sheep. To do so, we take a sample of each breed (the 2 samples have to be comparable) and we weigh each animal. We then run an Independent-samples t-test on our data to find out if the difference is significant.
We may also want to test the effect of a diet on the level of a particular molecule in sheep’s blood: to do so we choose one sample of sheep and we take a blood sample at day 1 and another one say at day 30. This time we would apply a Paired-Samples t-test as we are interested in each individual difference between day 1 and day 30.
Now, we want to compare the body length between males and females in coyotes so we are going to go for an Independent-test. 


[bookmark: _Toc429477896][bookmark: _Toc430709452][bookmark: _Toc3466065]Independent t-test

t.test(coyote$length~coyote$gender, var.equal=T)

 [image: ]

So males coyotes are bigger than females but not significantly so (p=0.1045). 

You might have noticed that despite having collected the ‘recommended’ sample size, we did not reach significance. This is because the difference observed in the collected sample is smaller than expected. If we now consider the data as the one of a pilot study and run the power analysis again, using the actual 2 means and we would need a sample 3 times bigger to reach a power of 80%. But of course, one should wonder whether a 2.3 cm difference (<3%) is biologically meaningful.


[bookmark: _Toc460416032][bookmark: _Toc3466066]Paired t-test

Now let’s try a Paired t-test. As we mentioned before, the idea behind the paired t-test is to look at a difference between 2 paired individuals or 2 measures for a same individual. For the test to be significant, the difference must be different from 0.
A researcher studying the effects of dopamine (DA) depletion on working memory in rhesus monkeys, tested working memory performance in 15 monkeys after administration of a saline (placebo) injection and again after injecting a dopamine-depleting agent.

[bookmark: _Toc373762813][bookmark: _Toc453259271][bookmark: _Toc460416033][bookmark: _Toc3466067]Example (File: working.memory.csv)

working.memory<-read.csv("working.memory.csv", header=T)
head(working.memory)
[image: ]


boxplot(working.memory[2:3])

[image: ]

From the graph above, we can conclude that if placebo scores are higher than DA depletion ones, the difference does not seem very big. Before running the paired t-test to get a p-value we are going to check that the assumptions for parametric stats are met. The graphs seem to indicate that there is no significant departure from normality and this is confirmed by the Shapiro-Wilk test.

[image: ]

Let’s run the paired t-test:

t.test(working.memory$Placebo, working.memory$DA.depletion, paired=T)

[image: ]

You will have noticed that we did not run a test for the equality of variances in the paired t-test; this is because it is actually looking at only one sample: the difference between the 2 conditions. 

The paired t-test turns out to be highly significant (see Table above). So, how come the graph does not look more exciting?
The problem is that we don’t really want to compare the mean scores for both groups, we want to look at the difference pair-wise, in other words we want to know if, on average, a given monkey who has received the drug performs less than when he was given only the drug. So we are interested in the mean difference between the 2 treatments. 

We need to plot the difference. To do so, we need to create a new column containing the differences.

working.memory$Difference<- working.memory$Placebo-working.memory$DA.depletion
head(working.memory)

We can check the distribution of the differences.

stat.desc(working.memory$Difference, basic=F, desc=F, norm=T)

And then plot the differences:
stripchart(working.memory$difference,
	vertical=TRUE, 
	method="jitter", 
	las=1, 
	ylab="Differences",
	pch=16, 
	col="blue", 
	cex=2)
 
diff.mean <- mean(working.memory$difference)
segments(1-0.15,diff.mean, 1+0.15, diff.mean, col="black", lwd=3)

This time we can add error bars, like confidence interval to the graph. This is very informative as if 0 is well out the confidence interval limits (like here) it means the difference will be significant.

diff.se <- std.error(working.memory$difference) ## plotrix package ##
lower<-diff.mean-1.96*diff.se
upper<-diff.mean+1.96*diff.se
[image: ] 
arrows(x0=1, 
	y0=lower, 
	x1=1, 
	y1=upper, 
	length=0.3, 
	code=3, 
	angle=90,
	lwd=3)



We can test that the difference is significantly different from 0 using a one-sample t-test with 0 as a hypothetical value. The result will be exactly the same as the paired t-test as it is in effect looking at the same thing.

t.test(working.memory$difference ,mu=0)

[image: ]





























[bookmark: _Toc3466068]Chapter 5: Comparing more than 2 means
[bookmark: _Toc429477899][bookmark: _Toc430709455][bookmark: _Toc3466069]5-1 Comparison of more than 2 means: One-way Analysis of variance
[bookmark: _Toc429477900][bookmark: _Toc430709456][bookmark: _Toc3466070]A bit of theory

When we want to compare more than 2 means (e.g. more than 2 groups), we cannot run several t-test because it increases the familywise error rate which is the error rate across tests conducted on the same experimental data.

To understand the following, it helps to remember one of the basic rules (“law”) of probability: the Multiplicative Rule: The probability of the joint occurrence of 2 or more independent events is the product of the individual probabilities.

[image: ]


Now, let’s take an example: say we want to compare 3 groups (1, 2 and 3) and we carry out 3 t-tests (groups 1-2, 1-3 and 2-3), each with an arbitrary 5% level of significance, the probability of not making the type I error is 95% (= 1 - 0.05). The 3 tests being independent, we can multiply the probabilities (multiplicative rule), so the overall probability of no type I errors is: 0.95 * 0.95 * 0.95 = 0.857. Which means that the probability of making at least one type I error (to say that there is a difference whereas there is not) is 1 - 0.857 = 0.143 or 14.3%. So the probability has increased from 5% to 14.3%. If we compare 5 groups instead of 3, the family wise error rate is 40% (= 1 - (0.95)n)

To overcome the problem of multiple comparisons, we need to run an Analysis of variance (ANOVA) followed by post-hoc tests. Actually, there are many different ways to correct for multiple comparisons and different statisticians have designed corrections addressing different issues (e.g.: unbalanced design, heterogeneity of variance, liberal vs conservative). However, they all have one thing in common: the more tests, the higher the familywise error rate: the more stringent the correction. 
Tukey, Bonferroni, Sidak and others went for the FamilyWise Error Rate (FWER) mentioned above while others like Benjamini-Hochberg chose the False Discovery Rate (FDR) approach.
In the former, as already mentioned, the stringency of the correction will be a direct function of the number of comparisons (αadjust  = 0.05/n comparisons). The problem with this approach is that it is quickly very conservative, leading to a loss of power (lots of false negative). With only 10 comparisons, the threshold for significance is down to 0.005 (0.05/10), so when running pairwise comparisons across 20.000 genes, the correction becomes over conservative.
One way to address this issue is to use the FDR approach which controls the expected proportion of “discoveries” (significant tests) that are false (false positive). This allows for a less stringent control of Type I Error than FWER procedures which control the probability of at least one Type I Error. It results in more power but at the cost of increased numbers of Type I Errors.
The difference between FWER and FDR is that, with the former, a p-value of 0.05 implies that 5% of all tests will result in false positives whereas a FDR adjusted p-value (or q-value) of 0.05 implies that 5% of significant tests will result in false positives. 

The ANOVA is an extension of the 2 groups comparison of a t-test but with a slightly different logic. If we want to compare 5 means, for example, we can compare each mean with another, which gives you 10 possible 2-group comparisons, which is quite complicated! So, the logic of the t-test cannot be directly transferred to the analysis of variance. Instead the ANOVA compares variances: if the variance amongst the 5 means is greater than the random error variance (due to individual variability for instance), then the means must be more spread out than we would have explained by chance.

The statistic for ANOVA is the F ratio:

	F = 
	variance among sample means

	
	variance within samples (=random. Individual variability)



also:
	F = 
	variation explained by the model (systematic)

	
	variation explained by unsystematic factors



If the variance amongst sample means is greater than the error variance, then F>1. In an ANOVA, we test whether F is significantly higher than 1 or not.
Imagine we have a dataset of 78 data points, we make the hypothesis that these points in fact belong to 5 different groups (this is our hypothetical model). So we arrange the data into 5 groups and we run an ANOVA. 

Below, is a typical example of analyse of variance table

	Source of  variation 
	Sum of Squares 
	df 
	Mean Square 
	F 
	p-value 

	Between Groups
	2.665 
	4
	0.6663 
	8.423 
	<0.0001

	Within Groups
	5.775 
	73 
	0.0791 
	
	

	Total
	8.44 
	77 
	
	
	



Let’s go through the figures in the table. First the bottom row of the table: 

Total sum of squares = ∑(xi – Grand mean)2  

In our case, Total SS = 8.44. If we were to plot your data to represent the total SS, we would produce the graph below. So the total SS is the squared sum of all the differences between each data point and the grand mean. This is a quantification of the overall variability in our data. The next step is to partition this variability: how much variability between groups (explained by the model) and how much variability within groups (random/individual/remaining variability)?



According to our hypothesis our data can be split into 5 groups because, for instance, the data come from 5 cell types, like in the graph below.

So we work out the mean for each cell type and we work out the squared differences between each of the means and the grand mean (∑ ni (Meani - Grand mean)2 ). In our example (second row of the table): Between groups SS = 2.665 and, since we have 5 groups, there are 5 – 1 = 4 df, the mean SS = 2.665/4 = 0.6663. 
If you remember the formula of the variance (= SS / N-1, with df=N-1), you can see that this value quantifies the variability between the groups’ means: it is the between-groups variance. 

Between group variability
Within group variability

There is one row left in the table, the within-groups variability. It is the variability within each of the five groups, so it corresponds to the difference between each data point and its respective group mean:
Within groups sum of squares = ∑ (xi - Meani)2  which in our case is equal to 5.775. 
This value can also be obtained by doing 8.44-2.665 = 5.775, which is logical since it is the amount of variability left from the total variability after the variability explained by the model has been removed.

In our example the 5 groups sizes are 12, 12, 17, 17 and 17 so df = 5 x (n – 1) = 73 
So the mean variability within groups: SS = 5.775/73 = 0.0791. This quantifies the remaining variability, the one not explained by the model, the individual variability between each value and the mean of the group to which it belongs according to the hypothesis. From this value can be obtained what is often referred to as the Pooled SD (=SQRT(MS(Residual or Within Group)). When obtained in a pilot study, this value is used in the power analysis. 
At this point, we can see that the amount of variability explained by our model (0.6663) is far higher than the remaining one (0.0791).
We can work out the F-ratio: F = 0.6663 / 0.0791 = 8.423

The level of significance of the test is calculated by taking into account the F ratio and the number of df (degree of freedom) for the numerator and the denominator. In our example, p<0.0001, so the test is highly significant and we are more than 99% confident when we say that there is a difference between the groups’ means. This is an overall difference and even if we have an indication from the graph, we cannot tell which mean is significantly different from which.
This is because the ANOVA is an “omnibus” test: it tells us that there is (or not) an overall difference between our means but not exactly which means are significantly different from which. This is why we apply post-hoc tests. Post hoc tests could be compared to t-tests but with a more stringent approach, a lower significance threshold to correct for familywise error rate. We will go through post-hoc tests more in detail later.

[bookmark: _Toc372614969][bookmark: _Toc387305709][bookmark: _Toc429477901][bookmark: _Toc430709457][bookmark: _Toc3466071]Example   (File: protein.expression.csv)

Let’s do it! We want to find out if there is a significant difference in terms of protein expression between 5 cell types. 

[image: ]


First we need to see whether the data meet the assumptions for a parametric approach. Well it does not look good: 2 out of 5 groups (C and D) show a significant departure from normality. As for the homogeneity of variance, even before testing it, a look at the scatter plots and box plots (see Graphs above) tells us that there is no way the second assumption is met. The data from groups C and D are quite skewed and a look at the raw data shows more than a 10-fold jump between values of the same group (e.g. in group A, value line 4 is 0.17 and value line 10 is 2.09). 

[image: ]
 

A good idea would be to log-transform the data so that the spread is more balanced and to check again on the assumptions. The variability seems to be scale related: the higher the mean, the bigger the variability. This is a typical case for log-transformation. 

protein.stack.clean$log10.expression<-log10(protein.stack.clean$expression)

Speaking of log-transformation, beanplot has a built-in procedure to automatically determine whether a log transformation of the response axis is appropriate or not, to get rid of it, we need: log="". In our case, since we are thinking log we might as well let the function choose. 

[image: ]


[image: ]

One last thing before we run the ANOVA: we need to check for the second assumption: the homogeneity of variance. To do so, we do what we did before running the t-test: we run a Levene test:

leveneTest(protein.stack.clean$log10.expression,protein.stack.clean$line) ## car package ##

[image: ]
Now that we have sorted out the data, we can run the ANOVA: to do so, you go:

anova.log.protein<-aov(log10.expression~line,data=protein.stack.clean)
summary(anova.log.protein)

[image: ]



The overall p-value is significant (p=1.78e-05) so the next thing to do is to choose a post-hoc test. There are 2 widely used: the Bonferroni test which is quite conservative so we should only choose it when we are comparing no more than 5 groups and the Tukey which is more liberal. First let’s try the Bonferroni test. It is built into R:

pairwise.t.test(protein.stack.clean$log10.expression,
protein.stack.clean$line, p.adj = "bonf")
[image: ]



Then Tukey:

TukeyHSD(anova.log.protein,"line")

[image: ]

Again, from the table above we can find out which pairwise comparison reaches significance and which does not. 

bar.expression<-barplot(expression.means, beside=TRUE, ylab="Mean expression",ylim=c(0,3), las=1)
expression.se <- tapply(protein.stack.clean$expression,
protein.stack.clean$line,std.error) 

arrows(x0= bar.expression, y0=expression.means-expression.se, x1= bar.expression, y1=expression.means+expression.se, length=0.2, angle=90,code=3)
[image: ]










[bookmark: _Toc158524929][bookmark: _Toc158525649][bookmark: _Toc429477903][bookmark: _Toc430709459]




5-2 Two-way Analysis of Variance (File: goggles.dat)

So far, in the context of the t-test and the one-way ANOVA, we have considered the effect of a single independent variable or predictor on some outcome. Like gender on body length for coyotes or cell lines on protein expression. Sometimes, we may want to study the effect of more than one predictor on a given outcome. In that case, we will want to use a multiple factor analysis, sometimes also referred to as factorial ANOVA. In this section, we will see how to deal with 2 factors or 2 predictors and how to do a two-way ANOVA.

We saw in the previous chapter that running an ANOVA is all about partitioning the variance as seen below.

[image: ]

[image: ]

The logic is pretty much the same for a 2-way ANOVA as seen below.

[image: ]

[image: ]

However, there is an extra layer of complexity with the interaction. Let’s see how it works through an example.

[bookmark: _Toc492888787][bookmark: _Toc3466073]Example (File: goggles.csv)

In the UK, there is something known as the beer-goggle effect: it is about subjective perception of physical attractiveness and how it become less accurate after alcohol is consumed. An anthropologist wanted to study the effects of alcohol, so in fact the beer-goggle effect, on mate selection at night-clubs. She was also interested in whether this effect was different for men and women. So she picked 48 students and ran an experiment with results presented below. The scores are the levels of attractiveness (out of 100) from a pool of independent judges of the person that the participant was chatting up at the end of the evening.
[image: ]

As always, the first thing to do is to explore the data. To understand the concept of interaction, the best way is to follow the logic of the 2-way ANOVAs: to look at the individual effects of the factors and then the interaction between the 2.

Main effect of alcohol:

First we need to order the levels of the factor alcohol in a sensible fashion.

goggles$alcohol <- factor(goggles$alcohol, levels = c("None", "2 Pints", "4 Pints"))

Then:
stripchart(goggles$attractiveness~goggles$alcohol,
           vertical=TRUE,
           method="jitter",
           las=1,
           ylab="Attractiveness", 
           col="green",
           cex=2,
           pch=16)

attractiveness.gender.means<-tapply(goggles$attractiveness,goggles$gender,mean)
segments(1:3-0.15,attractiveness.gender.means,1:3+0.15, attractiveness.gender.means, col="black", lwd=3)

[image: ]
One can see that there is not much happening between None and 2 Pints, but after 4 Pints the level of attractiveness drops quite a bit. We can also notice that there does not seem to be anything too worrying about the data, in terms of distribution or homogeneity of variance.

Main effect of gender:

stripchart(goggles$attractiveness~goggles$gender,
           vertical=TRUE,
           method="jitter",
           las=1,
           ylab="Attractiveness", 
           col=c("purple","dark orange"),
           cex=2,
           pch=16)

attractiveness.gender.means<-tapply(goggles$attractiveness,goggles$gender,mean)
segments(1:2-0.15,attractiveness.gender.means,1:2+0.15, attractiveness.gender.means, col="black", lwd=3)
[image: ]
The gender effect does not appear very strong with only a slight decrease for the males. Variability appears higher in males than females though.

Now both factors as stripcharts. For that we need first to create a new factor combining alcohol and gender.

goggles$subgroup <- paste(goggles$gender, goggles$alcohol, sep=" ") 
goggles$subgroup <- factor(goggles$subgroup, levels = c("Female None", "Male None", "Female 2 Pints", "Male 2 Pints", "Female 4 Pints", "Male 4 Pints"))

stripchart(goggles$attractiveness~goggles$subgroup,
           vertical=TRUE,
           method="jitter",
           las=1,
           ylab="Attractiveness", 
           col=c("purple","dark orange"),
           cex=2,
           pch=16)
attractiveness.subgroup.means<-tapply(goggles$attractiveness,goggles$subgroup,mean)

segments(1:6-0.2,attractiveness.subgroup.means,1:6+0.2, attractiveness.subgroup.means, col="black", lwd=4)
[bookmark: _GoBack][image: ]

The interaction is about the effect of one factor on the other. Or, put differently: is the effect of one factor the same on all levels of the other? And here the answer is no: males are slightly higher than females for the first 2 levels of alcohol but the gender effect is very different in the highest level of alcohol. This is what an interaction is about and looking at the graph, it is likely that this interaction will be significant.
[bookmark: OLE_LINK1]The concept of interaction becomes more intuitive when we try to formulate the answer to our original questions: is there an effect of alcohol consumption on the perception of physical attractiveness? The answer is: yes, but the effect is not the same for boys and girls. It is the ‘yes but’ that is about the interaction. Similarly, we could say: yes there is gender effect on the perception of physical attractiveness but the effect varies with the level of alcohol consumed.
Below is a graph, on fake data, where there would not be an interaction between the 2 factors.



Now try to answer the question about alcohol, looking at the graph above: the answer is just ‘yes’, there is no ‘but’. For both genders, the attractiveness is affected by the consumption of alcohol, in a similar way. And to the question about gender, the answer is ‘yes’, too: levels of attractiveness are higher for males than females, regardless the level of alcohol. There is no interaction here and both factors are independent from one another.

Now there is a quick way to explore interaction graphically. There is a cool function in R interaction.plot() which makes it easy for us to have a first look at the possibility of interaction between factors.

interaction.plot(goggles$alcohol,goggles$gender,goggles$attractiveness)

[image: ]

It does not give us the prettiest graph but it is very informative. We can see that the difference between genders changes in direction and amplitude across alcohol levels. Now, we have to be a bit careful about the interpretation of this graph as there are no error bars so no information about the behaviour of the data. It is very useful, however, to get an idea of the pattern observed. 

Let’s take a step back to understand how this interaction business works. Using a fake dataset we are going to go through the different possibilities when it comes to interaction.

In our fake dataset, we have 2 factors: Genotype (2 levels) and Condition (2 levels).

[image: ]

We are going to use that fake dataset to explore different possible scenarios when it comes to the relationship between 2 factors. The first possible scenario is single effect: either, in our case, Genotype or Condition effect. It would look like below.
[image: ]
Then there is the possibility that there is zero effect or both factors have an effect on the outcome variable.
[image: ]
Now, if we look at the 4 graphs above we can answer the question is there an effect of Genotype? For the Genotype effect graph, we can answers ‘yes’ and it is enough as the Genotype effect is the same regardless of Condition. Same thing for the Condition effect graph. Is there an effect of Condition on value, we can just say yes, as again the effect is the same within each Genotype. The same logic applies for Zero and Both effects. In the Both effect graph, even though both factors have an effect on Value, these effects are independent from one another. We can still answer ‘yes’ to both initial question as the Condition effect is the same in both gender and vice-versa.

When there is an interaction, however, the patterns are quite different.

[image: ]

On the left, there is an effect of Condition for the first Genotype but not the second one, and there is an overall Genotype effect. On the right, there is a Condition effect but the direction is inversed from Genotype to the other. And there is not Genotype effect. Now if we try to answer the question ‘is there a Condition effect?’ like before, we can no longer answer it by a simple yes or no. On the left, we would have to say yes BUT it depends on the Genotype. And same on the right. This BUT is pretty much the marker for the presence of an interaction (not necessarily significant though). 

One last thing, there is a kind of symmetry between the factors of a 2-way ANOVA: depending of the scientific question we can choose to say there is an effect of A but this effect varies between levels of B and vice versa.

interaction.plot(goggles$alcohol,goggles$gender,goggles$attractiveness)

[image: ]

So going back to our goggles data: we can say here that there is an effect of gender but that effect varies depending on alcohol intake.




interaction.plot( goggles$gender, goggles$alcohol,goggles$attractiveness)

[image: ]

If we consider the data from the other factor’s perspective, we can also say that there is an effect of alcohol but it depends on the gender.

Now because the presence or absence of an interaction will affect our interpretation of the data, it also affects the interpretation of the p-values. Below are the versions of the outcome of our analysis. The first one is the real one, where there is an interaction. The second one is fake and presented for the sake of understanding: how the output would look if there was no interaction.

[image: ]

In the case of the real data, we have a significant interaction. It means, we just interpret and report that interaction and we do not report the single effects. The reason is the same as when we are answering the question about the effect of one particular factor: if there is an interaction we cannot simply say, yes, there is a significant effect of alcohol, we also have to mention the fact that this effect is affected by gender (the BUT thing). Hence, we cannot look at the p-value of Alcohol Consumption as it is meaningless without the gender context (and vice-versa).
On the other hand, if there is no significant interaction, we can just interpret the 2 single effect as we would with a one-way ANOVA. So for instance, we can simply say: there is a significant effect of Gender on Attractiveness because that effect is the same regardless of the alcohol level.

Let’s run the actual analysis. To quantify the effects, we are going to use the aov() function we used in the previous section.

anova.goggles<-aov(attractiveness~alcohol+gender+alcohol*gender,data=goggles)
summary(anova.goggles)

[image: ]

So, there is a significant interaction between the 2 factors which is consistent with what we observed. Now, in terms of interpretation, when an interaction between 2 factors is significant we don’t look at the main effect. It is for the same reason as before: we cannot interpret the effect of one factor without mentioning the other, so it is useless to look at the main effect: all the interpretation is about the interaction.

Now, we may want to quantify the gender effect for each level of alcohol. The most elegant way would be to build contrasts, as in specify the comparisons we want to make, run them and then apply a correction for multiple comparisons. It works very well but it is a bit cumbersome and time consuming. A quicker way is to use Tukey post-hoc tests as we did for the one-way ANOVA. To do that, we write:

TukeyHSD(anova.goggles)

[image: ]
It is not very elegant because it compares everything to everything so some comparisons might be irrelevant. Also, by making more comparisons than we should we are overcorrecting, so it is a bit of a conservative approach. On the other hand, it gives us a quick answer to our question.

So, the function looks at the pairwise comparisons for the main effects and for the interaction. Remember: only look at the main effects if the interaction is not significant.

Anyway, we can conclude that there is a significant effect of alcohol consumption on the way the attractiveness of a date is perceived but it varies significantly between genders (p=7.99e-05). With 2 pints or less, boys seem to be very slightly more picky about their date than girls (but not significantly so) but with 4 pints the difference is reversed and significant (p=0.0003).




































[bookmark: _Toc3466074]Chapter 6: Correlation
(File: Exam Anxiety.dat)

If we want to find out about the relationship between 2 continuous variables, we can run a correlation.

[bookmark: _Toc460416038][bookmark: _Toc3466076]A bit of theory: Correlation coefficient

 A correlation is a measure of a linear relationship (can be expressed as straight-line graphs) between variables. The simplest way to find out whether 2 variables are associated is to look at whether they co-vary. To do so, we combine the variance of one variable with the variance of the other.

[image: cov(X,Y)==sum_(i==1)^N((x_i-x^_)(y_i-y^_))/N.]

A positive covariance indicates that as one variable deviates from the mean, the other one deviates in the same direction, in other words if one variable goes up the other one goes up as well.
The problem with the covariance is that its value depends upon the scale of measurement used, so we would not be able to compare covariance between datasets unless both data are measures in the same units. To standardise the covariance, it is divided by the SD of the 2 variables. It gives us the most widely-used correlation coefficient: the Pearson product-moment correlation coefficient “r”.
[image: corrf]


Of course, you don’t need to remember that formula but it is important that you understand what the correlation coefficient does: it measures the magnitude and the direction of the relationship between two variables. It is designed to range in value between 0.0 and 1.0.

[image: ]

The 2 variables do not have to be measured in the same units but they have to be proportional (meaning linearly related). Apart from r, there is another important coefficient:  the coefficient of determination r2: it gives the proportion of variance in Y that can be explained by X, in percentage.
Finally, the assumptions for correlation (regression in general) are pretty much the ones we have seen before: 
Linearity: The relationship between X and the mean of Y is linear.
Homoscedasticity: The variance of residual is the same for any value of X.
Independence: Observations are independent of each other.

Normality: For any fixed value of X, Y is normally distributed. 
When running a regression in general and a correlation in particular, we need to check for problematic points. They can be: 

Outliers: an outlier is defined as an observation that has a large residual. In other words, the observed value for the point is very different from that predicted by the regression model.

Leverage points: A leverage point is defined as an observation that has a value of x that is far away from the mean of x. 

Influential observations: An influential observation is defined as an observation that changes the slope of the line. Thus, influential points have a large influence on the fit of the model. One method to find influential points is to compare the fit of the model with and without each observation.

The bottom line is that first we look at the outliers, once we have identified them, we check the influence statistics and if one or more are ‘out of line’ we can then safely remove the value.


[bookmark: _Toc372614972][bookmark: _Toc387305712][bookmark: _Toc429477904][bookmark: _Toc430709460][bookmark: _Toc3466077] Example (File: Exam Anxiety.dat)

exam.anxiety<-read.table("Exam Anxiety.dat", sep="\t",header=T)

The first thing we are going to do is to plot the data. We will start with revising time vs. anxiety levels.

plot(exam.anxiety$Anxiety~exam.anxiety$Revise,col=exam.anxiety$Gender,
pch=16)
legend("topright", title="Gender",inset=.05, c("Female","Male"), horiz=TRUE, pch=16,col=1:2)

[image: ]

By looking at the graph, one can think that something is happening here. To get a better idea we can add lines-of-best fit but to do that we first need to fit the model as the lines-of-best fit’s coefficients are one of the outputs of the regression:

fit.male<-lm(Anxiety~Revise,data=exam.anxiety[exam.anxiety$Gender=="Male",])
fit.female<-lm(Anxiety~Revise,data=exam.anxiety[exam.anxiety$Gender=="Female",])

abline((fit.male), col="red")
abline((fit.female), col="black")

[image: ]

Now, we want to quantify the strength of the relationship between our 2 variables of interest but first we need to check on the data.


[bookmark: _Toc460416040][bookmark: _Toc3466078]Outliers and influential cases 

We might have noticed that one point, possibly 2, are really far from the others. So let’s check out our data and keep an eye on our misbehaving cases and in particular the boy (point Code 78) who spent 2 hours revising, did not feel stressed about it (Anxiety score: 10) and managed a 100% mark in his exam. Yeah right …
 


[image: ]
par(mfrow=c(2,2) 
plot(fit.male) 










The first plot depicts residuals versus fitted values. Residuals are measured as follows:
residual =  observed y   –   model-predicted y. 

So the further the observed y from the one predicted by the model, the poorer the prediction. The plot of residuals versus predicted values is useful for checking the assumption of linearity and homoscedasticity. If the model does not meet the linear model assumption, we would expect to see residuals that are very large (big positive value or big negative value). To assess the assumption of linearity we want to ensure that the residuals are not too far away from 0. To assess if the homoscedasticity assumption is met we look to make sure that there is no pattern in the residuals and that they are equally spread around the y = 0 line. On our case, R identifies 3 points with high residuals, one of which has a really high one: point 78.

The second plot (QQ-plot) evaluates the normality assumption. It compares the residuals to "ideal" normal observations. We want our observations to lie well along the 45-degree line in the QQ-plot, which is the case here, except for point 78.

The third plot is a scale-location plot (square rooted standardised residual vs. predicted value). This is useful for checking the assumption of homoscedasticity. In this particular plot we are checking to see if there is a pattern in the residuals. In our case, things look OK. Point 78 is, however, away from the others.
Finally, the fourth plot is of "Cook's distance", which is a measure of the influence of each observation on the regression coefficients. The Cook's distance statistic is a measure, for each observation in turn, of the extent of change in model estimates when that particular observation is omitted. Any observation for which the Cook's distance is close to 1 or more (above 0.5), or that is substantially larger than other Cook's distances (highly influential data points), requires investigation. Once more, in our case, point 78 is of concern.

Outliers may or may not be influential points. As stated before, influential outliers are of the greatest concern. They should never be disregarded. Careful scrutiny of the original data may reveal an error in data entry that can be corrected. They can be excluded from the final fitted model but they must be noted in the final report or paper.

On our case, one point stands out in all 4 graphs: point 78 so we will look at the correlation with and without this value.

[image: ]plot(fit.female)














For the girls, point 87 stand out, though not as strikingly as point 78 for the boys. And it is below the threshold to be identified as an influential case (plot 4). We will, however, keep an eye on it.

To get the output of the analysis:

summary(fit.male)

[image: ]

From this output we get 4 important pieces of information. First the coefficients of the line of best fit:
Intercept: 84.19 and slope: -0.53. So it goes: Anxiety=84.19-0.53*Revise

We can also see that the relationship between the 2 variables is highly significant: p<2e-16. And finally R2=0.3568: the model explains about 36% of the variability observed in anxiety. We can get the coefficient of correlation by calculating the square root of R2 or with the line below, if we want to look at the relationships between all variables.

cor(exam.anxiety[exam.anxiety$Gender=="Male",c("Exam","Anxiety","Revise")])

[image: ]

For the females:
summary(fit.female)

[image: ]
We get:
Anxiety=91.94-0.82*Revise with p<2e-16.

So a significant result again, with a higher intercept and a steeper slope as expected. And for the correlations:

cor(exam.anxiety[exam.anxiety$Gender == "Female", c("Exam","Anxiety","Revise")])

[image: ]

Now what happens if we remove point 78 from the males dataset and rerun the analysis?

fit.male2<-lm(Anxiety~Revise, data=exam.anxiety[exam.anxiety$Gender=="Male"&exam.anxiety$Code!=78,])
summary(fit.male2)

[image: ]

We can notice that, without the influential outlier, the slope is steeper but most importantly R2 jumps from 36% to 65% so a much better fit.

For the females:

fit.female2<-lm(Anxiety~Revise, data=exam.anxiety[exam.anxiety$Gender=="Female"&exam.anxiety$Code!=87,])
summary(fit.female2)

[image: ]
This model is better than the one with the outlier but the influence of point 87 is not as big. Keeping or removing the value is more debatable.

[image: ]


plot(exam.anxiety$Anxiety~exam.anxiety$Revise,col=exam.anxiety$Gender,pch=16)

legend("topright", title="Gender",inset=.05, c("Female","Male"), horiz=TRUE, pch=16,col=1:2)

abline((fit.male), col="red")
abline((fit.female), col="black")
abline((fit.male2), col="red",lty=3)
abline((fit.female2), col="black",lty=3)

[image: ]


[bookmark: _Toc3466079]Chapter 7: Non-Parametric approach
[bookmark: _Toc3466080]7-1 Comparing 2 groups

What if the data do not meet the assumptions for parametric tests? Then, we should go for a non-parametric approach. The choice between the two is not always easy, however. If the outcome is a rank or a score, then it is clearly not Gaussian and going for a non-parametric approach is a no-brainer. The difficulty is mostly with small samples, where it is often not easy to determine the distribution. In that case, looking at previous data might help, as what matters is the distribution of the overall population, not the distribution of the sample.
Non-parametric tests are not strictly speaking assumption-free. For instance, they assume a continuous distribution, though scores are OK, but they are far less restrictive than their parametric counterparts. Most of them are based on the principle of ranking: the smallest value has the lowest rank and the highest value the highest rank.
Some may argue that, when in doubt, it is more valid to use nonparametric methods because they are "always valid, but not always efficient," while parametric methods are "always efficient, but not always valid" (Nahm, 2016).


[bookmark: _Toc492888777][bookmark: _Toc3466081]Independent groups: Mann-Whitney (= Wilcoxon’s rank-sum) test

The way the Mann-Whitney works is really cool. It groups all the data, regardless of which group it belongs to, and ranks them. The difference, or absence of, between the two groups is based on the sum of the ranks in each group. Hence, if there is a difference, the group with the highest values will have the highest ranks and thus the highest sum of ranks. The Mann-Whitney statistic W is calculated as follows:

W = sum of ranks (for each group so W1 and W2) – mean rank. The smallest of the two Ws is chosen and used to calculate the associated p-value as illustrated below.

[image: ]

Let’s try an example.
[image: ]
[bookmark: _Toc492888778][bookmark: _Toc3466082]Example (File: smelly teeshirt.csv) 


In a study designed to assess whether group body odour is less disgusting when it is associated with an in-group member versus an out-group member, researchers presented two groups of Cambridge University students with one of two smelly, worn t-shirts. One t-shirt bore the logo of Cambridge University and the other bore the logo of Oxford University. The students were asked to rate their disgust on a 7-point ordinal scale. Higher ratings indicate greater levels of disgust. The disgust ratings for each group are presented in the smelly_teeshirt file.
[image: ]
smelly.teeshirt<-read.csv("smelly teeshirt.csv",header=T)
head(smelly.teeshirt) 




[image: ]smelly.teeshirt.stack <- melt(smelly.teeshirt)
colnames(smelly.teeshirt.stack)<-c("university","smell") 
head(smelly.teeshirt.stack) 

Quick look at the data:

boxplot(smelly.teeshirt.stack$smell~smelly.teeshirt.stack$university, 
        pch = 20,  
        cex=2, 
        lwd=2,
        las=1,
        ylab="Smell",
        cex.axis=1.5,
        cex.lab=1.5)

stripchart(smelly.teeshirt.stack$smell~smelly.teeshirt.stack$university,
           vertical=TRUE,
           method="jitter",
           las=1,
           pch=16,
           cex=2,
           col="red",
           add=TRUE)


[image: ]

Since we are going for a non-parametric approach, box plot or median are best.
The Mann-Witney test and the Wicoxon’s rank one are the same and the function in R is: wilcox.test()

wilcox.test(smelly.teeshirt.stack$smell~smelly.teeshirt.stack$university)

[image: ]
So, not surprisingly(!), the Cambridge students find the smell of Oxford t-shirts significantly more disgusting than that of Cambridge ones.

Note: depending on which order we enter the data, the function will give either the biggest or the smallest W, which is confusing but does not affect the outcome of the test.


[bookmark: _Toc492888779][bookmark: _Toc3466083]Dependent groups: Wilcoxon’s signed-rank test

This test is also based on ranks but this time the differences between the two members of the pair are ranked (see example below). The zero differences are ignored and the sum of the positive and of the negative differences are calculated (T+ and T-). Following the same logic as for the Mann-Whitney, the smallest of the two Ts is chosen and becomes the T statistic. This T will allow the calculation of the p-value. Easy.

[image: ]

In R, the function is the same as for the independent approach but we have to specify about the matching:

wilcox.test(paired = TRUE)

[bookmark: _Toc492888780][bookmark: _Toc3466084][image: Image result for botulinum toxin]Example (File: botulinum.csv)

[image: ]A group of 9 disabled children with muscle spasticity (or extreme muscle tightness limiting movement) in their right upper limb underwent a course of injections with botulinum toxin to reduce spasticity levels. A neurologist (blind to group membership) assessed levels of spasticity pre- and post-treatment for all 9 children using a 10-point ordinal scale. Higher ratings indicated higher levels of spasticity. The ratings for each group are presented in the file botulinum.csv.

botulinum<-read.csv("botulinum.csv",header=T) 
head(botulinum)





beanplot(botulinum$before, botulinum$after, names = c("before", "after"))
boxplot(botulinum$before, botulinum$after, names = c("before", "after"))

[image: ][image: ]


On top of the fact that the dependent variable in both cases is measured using an ordinal scale, the distribution of difference scores in both cases deviates from normality. So, we should definitely go for a non-parametric approach.

Let’s have a look at the difference:

botulinum$difference <-botulinum$after - botulinum$before

beanplot(botulinum$difference,
         las=1, overallline = "median", 
         ylab = 'Difference', 
         cex.lab=1.5, 
         col="light yellow",
         what = c(TRUE, TRUE, TRUE, FALSE),
         cex.axis=1.5) 



stripchart(botulinum$difference,
           vertical=TRUE,
           method="jitter",
           las=1,
           pch=16,
           cex=2,
           col="orange",
           add=TRUE)


[image: ]


wilcox.test(botulinum$before, botulinum$after, paired = TRUE)

[image: ]

There was a significant difference pre- and post- treatment in ratings of muscle spasticity (p=0.008).
Please note that although the test reports T, it calls it V. Go figure.


[bookmark: _Toc3466085]7-2 Comparing more than 2 groups 

[bookmark: _Toc492888784][bookmark: _Toc3466086]Kruskal-Wallis

What if the data do not meet the assumptions for ANOVA? We can choose to run the non-parametric equivalent: the Kruskal-Wallis.
Now, the kruskal.wallis() function only produces the omnibus part of the analysis. However, we will often, but not always, want to look at the pairwise comparisons. The post-hoc test associated with the Kruskal-Wallis is the Dunn test and one of the arguments of the dunn.test() function (dunn.test package) is kw: the output of the Kruskal-Wallis, so that’s the function we will be using.
The statistic associated with the Kruskal-Wallis is H and it follows a Chi2 distribution hence the statistic reported in the output. The Dunn test works pretty much like the Mann-Whitney one.


[bookmark: _Toc492888785][bookmark: _Toc3466087]Example (File: creatine.csv)[image: ]

The data contain the result of a small experiment regarding creatine, a supplement that's popular among body builders. These were divided into 3 groups: some didn't take any creatine, others took it in the morning only and still others took it in the morning and evening. After doing so for a month, their weight gains were measured. 
The research question is: does the average weight gain depend on the creatine condition to which people were assigned?

creatine<-read.csv("creatine.csv",header=T)

stripchart(creatine$gain~creatine$creatine,
           vertical=TRUE,
           method="jitter",
           las=1,
           pch=16,
           cex=2,
           col="orange")
           
creatine.means<-tapply(creatine$gain,creatine$creatine,mean)
centre<-1:3
segments(centre-0.2,creatine.means,centre+0.2,creatine.means, col="black", lwd=4)
[image: ]


boxplot(creatine$gain~creatine$creatine)
beanplot(creatine$gain~creatine$creatine)


[image: ] [image: ]


beanplot(creatine$gain)

[image: ]

This one looks pretty cool.

tapply(creatine$gain,creatine$creatine,sd)

[image: ]
The graphical exploration of the data, together with a look at the standard deviation tell us that a parametric approach would be unwise.

So, here we go:

dunn.test(creatine$gain,creatine$creatine,kw=TRUE,method="bonferroni",alpha=0.05) ## dunn.test package ##

[image: ]

The omnibus part of the analysis tells us that there is no overall difference between the 3 groups (p=0.14). Now because of the absence of significance, we don’t need to go any further but there is a little hiccup in the output that needs to be mentioned. The p-values presented in the table are one-sided ones, so it will not do. There are 2 ways to deal with this: the first one, we can just multiply by the p-values and we are good. Second approach, a bit more advanced, we can ask R to do it for us. First, we will create an object, then from that object we will take the P.adjusted and multiply them by 2 (except the first one as it is already 1). Remember, the p-value from a one-tailed test is 2 times lower than that of a one-tailed one. Finally, to make the output clearer, we will assign a name to each comparison.

model<-dunn.test(creatine$gain,creatine$creatine,kw=TRUE,method="bonferroni")
adjust.p.values <- model$P.adjusted*c(1,2,2)
names(adjust.p.values) <- model$comparisons
adjust.p.values

[image: ]

So, this study did not demonstrate any effect from creatine (χ2 = 3.87, p = 0.14).


[bookmark: _Toc3466088]Non-parametric two-way Analysis of Variance

What if the data do not meet the assumptions for a 2-way ANOVA? Well, it is a problem as the equivalent test: the Scheirer-Ray-Hare is not well documented nor well regarded, so we will not cover it in this manual.

If we absolutely must, there is a not-so-elegant and a-bit-cumbersome way to deal with such a design: build groups like we did in the 2-way ANOVA above so from a 2 groups by 3 groups design (2-way) we get a 6 groups one (1-way). To this design, we can apply a Kruskal-Wallis approach.


[bookmark: _Toc3466089]7-3 Non-parametric Correlation: Spearman correlation coefficient

The truth is that Pearson coefficient behaves pretty well even if data are not normal. Spearman is used mostly for ranked data. Spearman's correlation determines the strength and direction of the monotonic relationship between your two variables rather than the strength and direction of the linear relationship between your two variables, which is what Pearson's correlation determines.
The formula for ρ (rho, the equivalent of r) is the same for Pearson and Spearman, expect that for Spearman the values are ranks.
[image: ]
[bookmark: _Toc492888793][bookmark: _Toc3466090]Example (File: dominance.csv) 

After determining the dominance rankings in a group of 6 male colobus monkeys, Melfi and Poyser (2007) counted eggs of Trichuris nematodes per gram of monkey faeces, a measurement variable. 




They wanted to know whether social dominance was associated with the number of nematode eggs, so they converted eggs per gram of faeces to ranks and used Spearman rank correlation.

dominance <- read.csv("dominance.csv")
head(dominance)

[image: ]

barplot(dominance$eggs.per.gram, col="magenta", names.arg = dominance$monkey)

[image: ]

cor.test(dominance$dominance,dominance$eggs.per.gram, method = "spearman")

[image: ]
We will almost never use a regression line for either description or prediction when you do Spearman rank correlation, so don't calculate the equivalent of a regression line.
As for the relationship between dominance and parasitism, it is significant (p=0.017) with high ranking males harbouring a heavier burden.












































[bookmark: _Toc3466091]Chapter 8: Linear models

There is another way to look at data, another perspective for the analysis: linear modelling. Now, this approach should not be daunting in any way as linear modelling is really about language.

If we look at the lobster data below, there are 2 ways to formulate the question associated with it. Keeping up with what we have been doing so far, we can ask: Is there a difference between the 3 diets? If we want to take the linear model perspective, we then ask: Can diet predict weight? And this is pretty much all there is to it.


[image: ]

[bookmark: _Toc3466092]8-1: Simple linear model

One of the simplest versions of linear model is linear regression. We have talked about correlation already, and we know that it is about the association between 2 variables. Regression, on the other hand, not only addresses the question of association, it also asks whether one variable can be used to predict the values of the other.

[image: ]

So linear regression models the dependence between 2 variables: a dependent x and an independent y.
[image: ]

[bookmark: _Toc3466093]Example: (File: coniferlight.csv)

Let’s take an example. In an experiment that looks at light intensity in woodland, how is light intensity (cts: lux) affected by the height at which the measurement is taken, recorded as depth measured from the top of the canopy (cts:m).
[image: ]
[image: ]

plot(conifer$Light~conifer$Depth)


In R, we can start with the lm() function.

lm(conifer$Light~conifer$Depth)

If we run this command, we will get the output below:

[image: ]


So we get: light = 5014 - 292*depth
We are going to use linear models to do a little bit of navigation in R. So if we store our analysis in an object, we can extract or use the information in it to do all sorts of cool stuff.

linear.conifer<-lm(conifer$Light~conifer$Depth)

If we now look into the Global Environment in R Studio (top right panel), we will get something like:

[image: ]


We recognise the 2 values that we used to write the linear model equation but there is a lot more. First, with the function abline(), we can ask R to draw a line of best-fit on top of our data. The function will use the coefficients values from linear.conifer to draw the line. How cool is that?


[image: ]

The relationship between light and depth appears negative and quite strong. Next, we may want to put a p-value on the relationship.







summary(lm.conifer)

[image: ]

In this output, we recognise the coefficients and we can also identify the p-value which is significant here. We also have access to the coefficient of determination. We mentioned it before and we know that it quantifies the proportion of variance in y that can be explained by x and it can be expressed as a percentage. So here, 71.65% of the variability observed in light is explained by the depth at which it is measured in a conifer tree, which is quite a lot.

We can also get the results in an ANOVA-like way with anova().

anova(linear.conifer)

[image: ]

This output allows us to get a better understanding about how R2 is calculated. The total amount of variability is 8738553 + 3457910 = 12196463. So the proportion explained by depth is 8738553/12196463 = 0.716. Ta-dah!

So depth predicts about 71% of the variability of light meaning that 29% is explained by other factors (e.g. individual variability …). For example, the model predicts 3627 lux at a depth of 4.75m in a conifer. There is an error associated with each prediction as the regression equation is actually: 

y = β0 + β1*x +  Ɛ 

The error is often referred to as the residual, literally what is left after the prediction, what is left unexplained. 

[image: ]

If we go back to linear.conifer, we have access to these values and we can understand better what is happening.

[image: ]




[bookmark: _Toc460416041]
These residuals are also used to help us assess how good or bad our model is. We saw in the correlation chapter that we could check the assumptions and identify influential outliers, this is all thanks to the residuals. Once more we can query linear.conifer().

par(mfrow=c(2,2))
plot(linear.conifer)

[image: ]

It is not perfect but there is nothing wrong either, we can accept the predictions of our model.


[bookmark: _Toc3466094]8-2: The linear model perspective

[bookmark: _Toc3466095]Comparing 2 groups

Now we are going to revisit some of the datasets we used already but with a linear model perspective. The first thing important to understand, is that it does not really matter is the predictor is categorical or continuous, the reasoning is pretty much the same.

[image: ]

If we start with the coyotes, the question we asked before was: Is there a difference between the 2 genders? In the linear model world, it becomes: Does gender predict body length? But it is really the same thing, isn’t it? So again, linear modelling is all about language and vocabulary.

Back in Chapter 3, we did run a t-test to quantify the relationship between gender and body length.
[image: ]

Let’s try linear model.

[image: ]
So, according to our model, females are expected to measure 89.712 cm and males are expected to be 2.344 cm longer 89.712 + 2.344 = 92.05. The model will use the baseline as the first alphabetical category unless told otherwise .Our means are indeed our model. We can formulate it in different ways:

[image: http://latex.codecogs.com/png.latex?%5Cdpi%7B200%7D%20%5Cfn_jvn%20%5Ctext%7BBody%20Length%7D%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D89.71%5C%5C%2092.06%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7BIf%20Female%7D%5C%5C%20%5Ctext%7BIf%20Male%7D%5Cend%7Barray%7D%5Cright%29]

Or:

[image: http://latex.codecogs.com/png.latex?%5Cdpi%7B200%7D%20%5Cfn_jvn%20%5Ctext%7BBody%20Length%7D%3D89.71%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C%202.344%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7BIf%20Female%7D%5C%5C%20%5Ctext%7BIf%20Male%7D%5Cend%7Barray%7D%5Cright%29]

Finally:

Body length = 89.712 + 2.344*Gender

We can see that the only real difference between a linear model where the predictor is continuous and one where the predictor is categorical is that in the former the coefficient is a number (e.g. the conifer example) whereas in the latter, it is a vector, here: (89.71, 92.06).

In both cases, the residuals are what is left after the prediction.
[image: ]

And these residuals can be used in a similar way in the coyote example as we used them in the conifer one.

[image: ]

Finally, we can use the 2 functions summary() and anova() as we did with the conifer data.

summary(linear.coyote)
[image: ]
anova(linear.coyote)
[image: ]






And like for the conifer data, we can quantify how predictive our model is thanks to R2.

[image: ]

The fact that the model explains only 3% makes sense when we look at the data: even though males are longer than females, there is a lot more about body lengths than gender; a lot as in … 97%.

[image: ]
Finally, rather than using the Shapiro-Wilk and the Levene tests to check for the assumptions, we can use the graphical diagnostics. We can do that because just like for the conifer model, we have the residuals.
[image: ]

So to conclude on this analysis, we can say that gender does not significantly predict body length in coyotes (p=0.105) and it actually only predicts 3% of the variation.


[bookmark: _Toc3466096]Comparing more than 2 groups: one factor

Let’s revisit the protein expression data with the linear model perspective. If we plot the data from protein.stack.clean.csv, we get the graph below.
[image: ]

When we first looked at the data we asked: Is there a difference in protein expression between the 5 cell lines? Now we can ask: Do the cell lines predict protein expression and how much of it if they do?

Previously, we got the results below:

[image: ]

So there was overall a cell line effect. Next, we looked at the pairwise comparisons.

[image: ]

If we take the linear model approach, we get.

[image: ]

Now if we want to identify the coefficients of the model as we did for the coyotes, we can get them from the output above or we can go:

[image: ]

So far, so good. Now, the means of the 5 cell lines are the model’s predictions.

[image: ]
In R, we can get the means:

[image: ]

We can then formulate these values in a linear model:

[image: http://latex.codecogs.com/png.latex?%5Cdpi%7B200%7D%20%5Cfn_jvn%20%5Ctext%7BExpression%7D%3D%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D-0.03144%5C%5C-0.28169%5C%5C-0.10644%5C%5C0.327405%5C%5C0.10183%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7BLine%20A%7D%5C%5C%5Ctext%7BLine%20B%7D%5C%5C%5Ctext%7BLine%20C%7D%5C%5C%5Ctext%7BLine%20D%7D%5C%5C%5Ctext%7BLine%20E%7D%5Cend%7Barray%7D%5Cright%29]

Now if we look at the coefficients again:

[image: ]

So the model is:

 [image: ]

And it works beautifully. For example:

Line B = -0.03-0.25 = -0.28

And we can check graphically, as we did before if the model is to be trusted.

par(mfrow=c(2,2))
plot(linear.protein)

[image: ]
As for the coefficient of determination, we can get it as we did with the coyote data.

[image: ]
So to conclude, cell lines do significantly predict protein expression and explain about 31% of its variation. Which is not bad but it also means that almost 70% is explained by some other factors.


[bookmark: _Toc3466097][bookmark: OLE_LINK2]Comparing more than 2 groups: two factors

We can also revisit the goggles data in a similar way. Previously, we got:

[image: ]
[image: ]
Now the way the model is built mirrors the way we write it in the function:

[image: ]

First we deal with the intercept, then each of the single and finally the interaction term.

Attractiveness= β0 + β1Alcohol + β2Gender + β3Gender*Alcohol

It becomes:

[image: http://latex.codecogs.com/gif.latex?%5Cdpi%7B120%7D%20%5Cfn_jvn%20%5Ctext%7BAttractiveness%7D%3D60.625&plus;%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C1.875%5C%5C-3.125%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7Bif%20None%7D%5C%5C%5Ctext%7Bif%202%20Pints%7D%5C%5C%5Ctext%7Bif%204%20Pints%7D%5Cend%7Barray%7D%5Cright%29&plus;%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C6.250%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7Bif%20Female%7D%5C%5C%5Ctext%7Bif%20Male%7D%5Cend%7Barray%7D%5Cright%29&plus;%20%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D0%5C%5C-1.875%5C%5C-28.125%5Cend%7Barray%7D%5Cright%29%5Cleft%28%5Cbegin%7Barray%7D%7Bc%7D%5Ctext%7BOtherwise%7D%5C%5C%5Ctext%7Bif%20Male%20and%202%20Pints%7D%5C%5C%5Ctext%7Bif%20male%20and%204%20Pints%7D%5Cend%7Barray%7D%5Cright%29]


So a male student who has drunk 4 pints, is predicted to be chatting with a date whose attractiveness score is:

Attractiveness = 60.625 – 3.125 + 6.250 – 28.125 = 35.625

And we can calculate, R2 as we did before.

[image: ]

We can then conclude as we did before: there is a significant effect of alcohol consumption on the way the attractiveness of a date is perceived but it varies significantly between genders (p=7.99e-05). With 2 pints or less, boys seem to be very slightly more picky about their date than girls (but not significantly so) but with 4 pints the difference is reversed and significant (p=0.0003).



[bookmark: _Toc3466098]Comparing more than 2 groups: two factors: one continuous and one categorical

The last thing we are going to cover is the case of models which contain both continuous and categorical predictors. There is nothing particular about it actually, apart from that R does not make it easy for those models to be plotted. So let’s do it together.

We are going to go back to the treelight data but this time we are going to add another species and thus add a categorical predictor: tree species.


treelight<-read.csv("treelight.csv")

plot(treelight$Light~treelight$Depth,col=treelight$Species,pch=16, cex=1.5)
legend("topright", c("Broadleaf", "Conifer"), pch=16, col=1:2)

[image: ]

We get the coefficients of the model the usual way:

lm(Light~Depth*Species, data=treelight)

[image: ]





linear.treelight<-lm(Light~Depth*Species, data=treelight)
summary(linear.treelight)

[image: ]

So far, nothing special. We can see which terms are significant and how much of the variability in light is explained by the model: 93.8%, which is definitely a lot. 

Now we notice that the interaction is not significant (p=0.39), so it would make sense to remove it from the model since it probably does not improve by much. Then, from the complete model, we go to what is called the additive model, as we just consider the addition of the single effect terms.

linear.treelight.add<-lm(Light~Depth+Species, data=treelight)
summary(linear.treelight.add)

[image: ]

We can see that R-squared is pretty much the same, 93.5%, so the interaction did not make much of a difference. There are other ways to test that and to build models but what we just did works out nicely here.

Now, the next thing that we probably want to do is plot our model and that’s where things get nasty. The function abline() we used before wants a vector of 2 values, one for the intercept and one for the slope and the problem here is that we have 3 values. So abline() is confused.

[image: ]

First, let’s make sure we understand these 3 values. Since we have no interaction, as we saw before, we are expecting graphical representation that should look like something like this:

[image: ]


So, the absence of a significant interaction means that the 2 slopes are parallel or rather they are the same. So, going back to the 3 values:

· the first one is the intercept for the broadleaf species (alphabetical order for the levels),
· the second one will be the slope
· and the third, the intercept for the second species (7962.0 – 3113.0)

We need somehow to extract these values in such a way that abline() can use them. First we are going to use the function coefficients() to get the values from the model linear.treelight.add and save them as a vector with 3 values.

cf.add<-coefficients(linear.treelight.add)
cf
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Then we just go:

abline(
cf.add [1], 
cf.add [2], 
col="black”
)

abline(
cf.add[1]+cf.add [3],
cf.add [2]), 
col="red"
)

The colours are chosen to match the one on the graph.



[image: ]
We get:

for broadleaf trees: Light = 7962.03 -262.17*Depth
for conifers: Light = (7962.03-3113.03) -262.17*Depth

If we want to plot the insignificant difference in slopes, we of course can.

 cf<-coefficients(linear.treelight)

[image: ]


abline(
cf[1]+cf[3], 
cf[2]+cf[4], 
col="red", 
lty="dashed”
)

abline(
cf[1], 
cf[2], 
col="black", 
lty="dashed"
)

plot(treelight$Light~treelight$Depth, col=treelight$Species, pch=16, las=1)
legend("topright", c("Broadleaf", "Conifer"), pch=16, col=1:2)


[image: ]
So to recapitulate, it is very easy to build models by just adding terms (factors) and it is not always necessary/meaningful to consider interactions. The error is always implicit even though we don’t always write it and each xi is predicted by the model with its own error.

[image: ]


Finally, let’s not forget it is possible to approach data and quantify relationships in different ways.


[image: ]




[bookmark: _Toc3466099][bookmark: _Toc372614947][bookmark: _Toc387305687][bookmark: _Toc429477879][bookmark: _Toc430709435][bookmark: _Toc437344430][bookmark: _Toc485203021][bookmark: _Toc158524921][bookmark: _Toc158525641]Chapter 9: Qualitative data
[bookmark: _Toc3466100]9-1 Comparison between 2 groups (1 factor)

[bookmark: _Toc3466101]Example (File: cats.dat)  
[image: ]
A researcher is interested in whether cats could be trained to line dance. He tries to train them to dance by giving them either food or affection as a reward (training) for dance-like behaviour.
 
At the end of the week a note is made of which animal could line dance and which could not (dance). All the variables are dummy variables (categorical).


The pivotal (!) question is: Is there an effect of training on cats’ ability to learn to line dance? We have already designed our experiment and chosen our statistical test: it will be a Fisher’s exact test or a Chi-square.


[bookmark: _Toc429477880][bookmark: _Toc430709436][bookmark: _Toc492895365][bookmark: _Toc3466102]Power Analysis with qualitative data

The next step is to run a power analysis. In an ideal world, you would have run a pilot study to get some idea of the type of effect size you are expecting to see. Let’s start with this ideal situation. Let’s say, in your pilot study, you found that 25% of the cats did line dance after received affection and 70% did so after they received food.

So we want to compare 2 proportions (0.25 and 0.7), with a power of 80% and a significance threshold of 5%.


So we want to compare 2 proportions (0.25 and 0.7), we will be using the function power.prop.test from R:

power.prop.test(p1 = .25, p2 = .7, power = .8, sig.level = 0.05)

[image: ]

R tells us that we need 2 samples of 18 cats to reach a power of 80%. In other words: if we want to be at least 80% confident to spot a reward effect, if indeed there is one, we will need about 36 cats altogether. 

Next the experiment is run and the data collected.
cats<-read.table("cats.dat", sep="\t",header=T)

Always worth have a quick look:

head(cats)
View(cats)

Next step, plotting the data:

plot(cats$Training, cats$Dance, xlab = "Training", ylab = "Dance")

[image: ]

Now this a weird looking graph. It tells us about the different proportions (frequencies) of cats dancing and not dancing in both groups but it has quite an unbalanced look. The reason for that is the unbalanced design of the experiment.

[image: ]

So that graph above is informative but not very pretty. We can do better than that and what would help is to change the format of the file into a contingency table. For that we can use the table above and change the counts into proportions prop.table() and then percentages. They can be more informative visually than raw data. When we are at it, we can round the values round() and get a nice neat table.

contingency.table <- table(cats.data)
contingency.table100<-prop.table(contingency.table,1)
contingency.table100<-round(contingency.table100*100)
contingency.table100
[image: ]
And we can plot the data as percentage/proportion:

barplot(t(contingency.table100), legend.text=TRUE) 

[image: ]

Prettier:

barplot(t(contingency.table100), 
        col=c("chartreuse3","lemonchiffon2"),
        cex.axis=1.2, 
        cex.names=1.5,
        cex.lab=1.5,
        ylab = "Percentages",
        las=1)
[image: ]

If we add legend.text=TRUE, R will add the legend on the graph but it will be a bit off (see above). If we want to have more control over it:

legend("topright",   
	title="Dancing", 
	inset=.05, 
	c("Yes","No"), 
	horiz=TRUE, 
	pch=15,
	col=c("chartreuse3","lemonchiffon2"))
[image: ]


[bookmark: _Toc485203024][bookmark: _Toc3466103]The χ2 and the Fisher’s exact tests

First, there are 2 types of χ2  test :
· a one-way χ2  test, which is basically a test that compares the observed frequency of a variable in a single group with what would be the expected by chance (also called goodness-of-fit).

· a two-way χ2  test, the most widely used, in which the observed frequencies for two or more groups are compared with expected frequencies by chance. In other words, in this case, the χ2  tells you whether or not there is an association between 2 categorical variables.

An important thing to know about the χ2, and for the Fisher’s exact test for that matter, is that it does not tell us anything about causality; it is simply measuring the strength of the association between 2 variables and it is our knowledge of the biological system we are studying which will help us to interpret the result. Hence, we generally have an idea of which variable is acting on the other. 

The χ2 value is calculated using the formula below:
[image: chi-square formula]

The observed frequencies are the ones we measured, the values that are in our table. Now, the expected ones are calculated this way:
Expected frequency = (row total)*(column total)/grand total

[image: ]So, for example: the expected frequency of cats that would line dance after having received food as reward is: (76*38)/200=14.44

We can also think in terms of probabilities:
· probability of line dancing:  38/200 
· probability of receiving food: 76/200
If the 2 events are independent, the probability of the 2 occurring at the same time (the expected frequency) will be: 38/200*76/200 = 0.072 and 7.2% of 200 is 14.4.


Intuitively, one can see that we are kind of looking for 50-50 (random output) results but accounting for the counts we have. If we work out the values for all the cells, we get the results above.

To run a χ2 analysis, we are going to use chisq.test(). 
There is only one assumption that we have to be careful about when we run a χ2: with 2x2 contingency tables we should not have cells with an expected count below 5 as if it is the case it is likely that the test is not accurate. For larger tables, all expected counts should be greater than 1 and no more than 20% of expected counts should be less than 5. 

Let’s see what we get:

· with the correction

[image: ]

· without the correction:

[image: ]

If we remember the χ2’s formula, the calculation gives us an estimation of the difference between our data and what we would have obtained if there was no association between our variables. Clearly, the bigger the value of the χ2, the bigger the difference between observed and expected frequencies and the more likely the difference is to be significant.

Now with a 2x2 table, we can also use a Fisher’s exact test: fisher.test()

[image: ]

As we can see here the p-values vary slightly between the 2 tests (p=1.31e-06 vs.p=4.77e-07) though the conclusion remains the same: cats only care about food. Though the samples are not very big here, the assumption for the χ2 is met so you can choose either test.

So both tests will give us the same-ish p-value for big samples but for small samples the difference can be more important. Fisher’s test is more accurate than Chi2 test on small samples but Chi2 test is more accurate than Fisher’s test on large samples.

Having said that, the calculation of the Fisher’s exact test is quite complex whereas the one for χ2 is quite easy so only the calculation of the latter is going to be presented here. Also, the Fisher’s test is often only available for 2x2 tables, so in a way the χ2 is more general. 
For both tests, the idea is the same: how different are the observed data from what we would have expected to see by chance i.e. if there were no association between the 2 variables. Or, looking at the table we may also ask: knowing that 76 of the 200 cats did dance and that 162 of them received affection, what is the probability that those 76 dancers would be so unevenly distributed between the 2 types of reward?  

Now, the last thing we need to discuss is the Yate’s correction. If we use the default version of chisq.test(), R will give us the p-value with Yates continuity correction. 
Misusing a statistical test means that the output (ie the p-value) should not be trusted and therefore it is very likely that there is an increase of the probability of making the type I error. So one solution is to increase the p-value, hence making it more difficult to reach significance thus reducing the probability of making the type I error. So all corrections for statistical tests work the same way: they increase the p-value. There is some danger, however, in using corrections and some people think that it does matter how far their data are from the assumptions, applying a correction will be like sprinkling some magic: it will make the problem go away. But of course, it is not true. So here are 3 scenarios:

· Data meet the assumptions: all good
· Data almost meet the assumptions: can be still OK but p-values will have to be considered with a pinch of salt
· Data far from meeting the assumptions: no corrections can help and another approach should be considered (non-parametric for instance).

Now the problem is where do we draw the line between almost and far? Where does it stop being OK use a correction? It is a slippery slope and people make all kind of mistakes because of that. So the use of corrections is quite controversial: some people think it should always be used just to be on the safe side, others that it should never be used.

One last thing: we can notice that the output from the tests are quite different. This is because the functions/packages have been written by different people. 
The Fisher’s test’s outcome gives us an extra bit of information: the odds ratio. It is exactly what it says it is: the ratio of the odds: the odds (or probability) of dancing in the food group over the odds of dancing in the affection one. It is basically the effect size and it is dead-easy to calculate. Using the information in the table below: 

[image: ]

Odds of dancing: Food group: 28/10
Odds of dancing: Affection group: 48/114

Odds ratio = Food group / Affection group = 6.6.

Cats in the receiving food as a reward are almost 7 times more likely to line dance than those receiving affection (p=1.31e-06).

One last thing: the test is always run on the actual counts and not the percentages. If not, the samples are artificially set to 100, which is either overestimating or underestimating the real sample size, which will have an effect on the power of the test and thus on the likelihood of its significance.

Let’s have a look at another example.

[bookmark: _Toc3466104]Example: Gene ontology enrichment  

Sometimes the values we are dealing with are just a few numbers, out of which we need to make some sense. 
For instance, say that in the entire genome (n=29395), 221 genes are associated with a function (e.g. antigen binding). From an experiment, we identified 342 genes out of which 23 are showing such an association. So here are our numbers: 23, 342, 221 and 29395 and we want to know if the observed enrichment is significant. 
For that, we can build a matrix and run a χ2 on it (or a Fisher’s test, let’s do both).

enrichment <- matrix(c(23, 342, 221, 29395), nrow=2, ncol=2, byrow = TRUE)

[image: ]

chisq.test(enrichment, correct=F)

[image: ]

fisher.test(enrichment)

[image: ]        
There are nine times more genes associated with our function of interest in our selected group than in the general background (p=4.33e-14).

This type of analysis is used in many areas of biology but one common example would be when trying to find functional associations between a list of gene hits from an experiment and functional lists from a database such as gene ontology.  In this type of analysis you take a list of genes with a known functional association and compare it to the genes in your experimental hit list.  The idea is that if there are more genes from the functional list in your hit list than you’d expect by chance that the associated function might be interesting in your experiment.
[image: ]

The data used in this case is a simple contingency table, the same as we’ve already seen.

[genes in genome]   	[genes in hit list]

[genes in functional category]			N			B

[genes not in functional category]		n			b			
[image: ]
In this sample output from the GOrilla search program (http://cbl-gorilla.cs.technion.ac.il/) you can see the 4 values for the test in brackets in the final column.  GOrilla does not use the Fisher’s test actually but the hypergeometric one; it is based on the same distribution but works slightly differently. It yields the same p-value though. It also shows the fold enrichment as well as the raw p-value.  Because many different tests have been performed (one for each functional category) the output also shows a p-value which has been corrected for multiple testing, which is the value you would actually use in this instance.


[bookmark: _Toc3466105]9-2 Comparison with more than 1 factor

A nice example to illustrate this type of analysis is DNA methylation. This is an epigenetic modification which is involved in gene regulation. DNA methylation is measured by a sequencing methodology called bisulphite sequencing.  The output of this method is a set of observations of individual cytosines where they can be observed as being either methylated or unmethylated.

The idea for the example analysis we’re going to do is that you would take all of the observations for one gene and count the number of methylated and unmethylated cytosines which fell within the gene body.  These counts would then be collected for multiple samples, which could be divided between different experimental conditions.

The question we want to ask would be whether the proportion of methylated reads (and therefore the methylation level) changes significantly between different experimental conditions.


[image: ]


[bookmark: _Toc3466106]Example: (File: dna_methylation_format2.csv)

[image: ]We still have a comparison between 2 groups, the comparison of interest shall we say, but for each group/condition, we have 3 biological samples. So here we want to know if something is happening between our groups (factor of interest) but accounting for the variability between samples (random factor, biological/experimental variation).

Values are independent observations of individual DNA bases. A DNA base is either methylated (Meth) or unmethylated (Unmeth).



  



The question is: to what extent can we predict the behaviour/variation of our outcome with 2 factors (one of interest and one random)? And by the way, the outcome can be continuous or categorical: if it is continuous, we will likely use a 2-way ANOVA and if it is categorical, and in our case binary: a binary logistic regression.

Actually, the question can be summarised as follows:

 Outcome ~ factor1 + factor2 + factor1*factor2. 

So here the question is: For each gene: Is there a difference in methylation between the 2 conditions (AL and DR) accounting for the variability between samples? 

First, let’s have a look at the data, for each gene, as percentages of methylation.

dna.methylation <- read.csv("dna_methylation_format2.csv")
head(dna.methylation)

[image: ]

dna.methylation$MethPercent<-(dna.methylation$Meth/(dna.methylation$Meth+dna.methylation$Unmeth)*100)
head(dna.methylation)

[image: ]
 
 
dna.methylation.Pno1<-dna.methylation2[dna.methylation2$Gene=="Pno1",]
dna.methylation.Pnpla5<-dna.methylation2[dna.methylation2$Gene=="Pnpla5",]
head(dna.methylation.Pnpla5)

[image: ]

par(mfrow=c(1,2))
## dna.methylation.Pno1<-as.data.frame(dna.methylation.Pno1) ##
barplot(dna.methylation.Pno1$MethPercent, 
        names.arg = dna.methylation.Pno1$Sample, 
        col=rep(c("lightblue","lightpink"), each=3), 
        main = "Pno1", 
        ylim=c(0,100),
        cex.names=0.6,
        ylab = "Percentage Methylation",
        las=1)
## dna.methylation.Pnpla5<-as.data.frame(dna.methylation.Pnpla5) ##
barplot(dna.methylation.Pnpla5$MethPercent, 
        names.arg = dna.methylation.Pnpla5$Sample, 
        col=rep(c("lightblue","lightpink"), each=3), 
        main = "Pnpla5", 
        ylim=c(0,100),
        cex.names=0.6,
        ylab = "Percentage Methylation",
        las=1)

[image: ]
From the graph above, we can see that there is some variability between the samples but also that overall values for the condition AL are higher than the ones in condition DR for Pno1 gene and the reverse for Pnpla5. This is promising: we expect variability between samples within a condition but also consistency between the conditions. This is what we are going to base our confidence on that methylation does differ between our conditions of interest.

There are different ways to go about quantifying the effects we see. We are going to go for a simple and stepwise one. First, let’s see if there is a significant difference between the samples within each condition and for each gene. For that, we can use Chi2 test. Each test will tell us if there is an overall difference between the samples. We don’t care here about pairwise comparisons, since each sample has no predictive meaning, we just care about consistency: are all the samples telling us the same thing?

## test difference between samples for each gene/condition ###

dna.methylation.Pno1.AL<-dna.methylation.Pno1[dna.methylation.Pno1$Group=="AL",]
chisq.test(dna.methylation.Pno1.AL[,4:5], correct=F)

dna.methylation.Pno1.DR<-dna.methylation.Pno1[dna.methylation.Pno1$Group=="DR",]
chisq.test(dna.methylation.Pno1.DR[,4:5], correct=F)

dna.methylation.Pnpla5.AL<-dna.methylation.Pnpla5[dna.methylation.Pnpla5$Group=="AL",]
chisq.test(dna.methylation.Pnpla5.AL[,4:5], correct=F)

dna.methylation.Pnpla5.DR<-dna.methylation.Pnpla5[dna.methylation.Pnpla5$Group=="DR",]
chisq.test(dna.methylation.Pno1.DR[,4:5], correct=F)
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So this is good news: there is no significant difference between the samples within each condition/each gene.

Now, the important stuff: is there a difference between our conditions of interest, AL and DR, accounting for the variability between the samples? Or: how much can we predict methylation using these 2 conditions?

As mentioned earlier, we are going to use the binary version of a 2-way ANOVA: the binary logistic regression. The 2 approaches belong to the wider family of linear models. Sometimes referred to as general linear models or generalized linear models. The idea is always the same: quantifying the linear relationship between predictors and outcome. The simplest format is: 

y = Constant + (coeff * x) 

and with 2 factors (like here):

y = Constant + (coeff1 * x1) + (coeff2 * x2)

This last equation can also be:

Outcome ~ factor1 + factor2 

And if we want to also look at the interaction, like we did with the quantitative data analysis:

Outcome ~ factor1 + factor2 + factor1*factor2

It is not always useful or meaningful to include the interaction term. For instance, in our case, we have already explored the difference between samples and saw that it was no significant. So we are interested in accounting for the sample variability but not how it interacts with our factor of interest.

With R, there are several packages/functions that allow for the analyses of this type of data, aov() and glm() being 2 of them. The latter works with both quantitative and qualitative data but the first one has the advantage of producing a more simple yet informative output. Ultimately they both do the same thing but since only glm() ‘caters’ for binary data we are going to use it. We just need to specify the family to which our outcome belongs.

glm(Outcome ~ factor1 + factor2, family = binomial())

Before, running the analysis, we need to restructure the data as glm() works on long file format.

dna.methylation.Pno1.long<-melt(dna.methylation.Pno1[,2:5], ID=c("Sample", "Group"))
dna.methylation.Pnpla5.long<-melt(dna.methylation.Pnpla5[,2:5], ID=c("Sample", "Group"))

head(dna.methylation.Pno1.long)

colnames(dna.methylation.Pno1.long)[3:4]<-c("Methylation", "Counts")
colnames(dna.methylation.Pnpla5.long)[3:4]<-c("Methylation", "Counts")

head(dna.methylation.Pno1.long)
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So, with glm(),  we go:

glm(Methylation~Group+Sample,data=dna.methylation.Pno1.long)

Now we need to specify the family of the data: family = binomial() 

There is one last thing: our outcome is Methylation but presented as in our file above, glm() ‘will not know’ that the counts associated with say ‘Unmeth’ in the first row is 166. If our data was in the format as on the left below, then each row being a single count, the function will handle it by summing the counts. But in our case, this step has been done (like in the file on the right) so we need an argument to specify the associated counts, for instance Counts= 166 for the first row. It is the ‘weight’ of Unmeth hence weights=Counts.

[image: ]


dna.model.Pno1<glm(Methylation~Group+Sample,data=dna.methylation.Pno1.long, 
family = binomial(), 
weights=Counts)

summary(dna.model.Pno1)

[image: ]
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glm(), rather than presenting the p-value associated with Group factor like aov() does, it gives it as the difference between a given level of a factor vs. a control level. By default the control is alphabetical so here AL. Hence, GroupDR associated with p= 8.84e-10. The rest of the output is not relevant as it shows comparisons between samples regardless of which group they belong to.

So here, we have for both genes a significant difference in methylation levels between the AL and DR groups (Pno1, p=8.87e-08 and Pnpla4, p=8.84e-10).

In this example we analysed only 2 genes, but in a real study we would likely to be analysing every gene in the genome.  The basic process remains the same though.  Below are the results of doing a genome-wide scan of this same data, showing the observed differences in methylation, and with the blue dots representing those which were identified as statistically significant.  You can see that there are many points with apparently large differences which were not identified as significant, probably because of either poor observation (low counts), or possibly because of high variation between samples in the same condition.
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Fit: aov(formula = 1og10. expression ~ line, data = protein.stack.clean)
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With significant interaction

ANOVA table SS DF  MS F (DFn, DFd) P value
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DF Sum 5q Mean sq F value Pri>F)
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Fit: aov(formula = attractiveness ~ alcohol + gender + alcohol * gender, data = goggles)
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call:
Im(formula = Anxiety ~ Revise, data = exam.anxiety[exam.anxiety$Gender ==

"Male", 1)
Residuals:

Min 1Q Median 3Q Max
-73.124 -2.900 2.221 6.750 16.600
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 84.1941 2.6213 32.119 < 2e-16 *%%
Revise -0.5353 0.1016 -5.267 2.94e-06 =%
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 13.3 on 50 degrees of freedom
Multiple R-squared: 0.3568, Adjusted R-squared: 0.344
F-statistic: 27.74 on 1 and 50 DF, p-value: 2.937e-06
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Call:
Im(formula = Anxiety ~ Revise, data = exam.anxiety[exam.anxiety$Gender ==

"Female", 1)
Residuals:
Min 1Q Median 3Q Max

-22.687 -6.263 -1.204 4.197 38.628

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 91.94181 2.27858 40.35 < 2e-16 #%%
Revise -0.82380 0.08173 -10.08 1.54e-13 #%*

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 10.42 on 49 degrees of freedom
Multiple R-squared: 0.6746, Adjusted R-squared: 0.668
F-statistic: 101.6 on 1 and 49 DF, p-value: 1.544e-13
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Exam  1.0000000 -0.3813845 0.4339865
Bnxiety -0.3813845 1.0000000 -0.8213698
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Call:

Im(formula = Anxiety ~ Revise, data = exam.anxiety[exam.anxiety$Gender ==
"Male" & exam.anxiety$Code != 78, 1)

Residuals:
Min 1Q Median 3Q Max
-22.0296 -3.8704 0.5626 6.0786 14.2525

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 86.97461 1.64755 52.790 < 2e-16 #%%
Revise -0.60752 0.06326 -9.603 7.59%e-13

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 8.213 on 49 degrees of freedom
Multiple R-squared: 0.653, Adjusted R-squared: 0.6459
F-statistic: 92.22 on 1 and 49 DF, p-value: 7.59le-13
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call:

Im(formula = Anxiety ~ Revise, data = exam.anxiety[exam.anxiety$Gender ==
"Female" & exam.anxiety$Code != 87, 1)

Residuals:
Min 1Q Median 3Q Max
-18.7518 -5.7069 -0.7782 3.2117 18.5538

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 92.24536 1.93591  47.65 <2e-16 ***
Revise -0.87504 0.07033 -12.44 <2e-16

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ’ 1

Residual standard error: 8.849 on 48 degrees of freedom
Multiple R-squared: 0.7633, Adjusted R-squared: 0.7584
F-statistic: 154.8 on 1 and 48 DF, p-value: < 2.2e-16
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'Male"&exam.anxiety$Code!=78,c("Exam”, "Anxiety"”, "Revise”)])

> cor(exam.anxiety[exam.anxiety$Gender:
Exam Anxiety Revise

Exam 1.0000000 -0.4653914 0.4028863

Anxiety -0.4653914 1.0000000 -0.8080950

Revise 0.4028863 -0.8080950 1.0000000

> cor(exam.anxiety[exam.anxiety$Gender=="Female"&exam.anxiety$Code!=87,c("Exam", "Anxiety","Revise")])
Exam Anxiety Revise

Exam 1.0000000 -0.4070663 0.4312691

Anxiety -0.4070663 1.0000000 -0.8736684

Revise 0.4312691 -0.8736684 1.0000000
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wilcoxon rank sum test with continuity correction

data: smelly.teeshirt.stackssmell by smelly.teeshirt.stacksuniversity
W =5, p-value = 0.004793
alternative hypothesis: true Tocation shift is not equal to 0
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Statistic of the Wilcoxon’s signed-rank test: T
* Here: Wilcoxon’s T = 4.5 (smallest of the 2 (absolute value))
* N =9 (we ignore the O difference): T + N -> p-value
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wilcoxon signed rank test with continuity correction

data: botuliniumssefore and botuliniumSafter
Vv = 45, p-value = 0.008258
alternative hypothesis: true location shift is not equal to 0
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Kruskal-wallis rank sum test
data: x and_group
kruskal-wallis chi-squared = 3.8677, df = 2, p-value = 0.14
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spearman’s rank correlation rho

data:  dominancespominance and dominanceseggs. per.gram
s = 68, p-value = 0.01667
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
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call:
Im(formula = conifers$Light ~ coniferSpepth)

Coefficients:
(Intercept) coniferS$pepth
5014.0 -292.2

I/

light = B, + B,*depth
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call:
Im(formula = coniferSLight ~ conifers$pepth)

Residuals:
Min 1Q median 3Q Max
-819.9 -330.5 -192.3 431.2 1014.1
coefficients: p-Value
Fa td. Error t value Pr(>|t])
(Intercept) 5013.98 342.15 14.654 6e—08
conifer$pepth | -292.16 55.41 -5.27% 0.000263 y**
signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘' 1

Residual andard error: 560.7 on 11 degrees of freedom
Multiple|R-squared: 0.7165 Adjusted R-squared: 0.6907
F-statistic: 8 on I andxll DF, p-value: 0.0002633

Coefficient of determination
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Response: coniferSLight

Df sum Sq Mean sq F value  Pr(>F)
coniferSpepth 1 8738553 8738553 27.798 0.0002633 ***
Residuals 11 3457910 314355
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t.test (coyoteSlength~coyoteSgender,

Two Sample t-test

data: coyote$length b

t = -1.6411, df = 8

alternative hypothesX

95 percent confidence interval:

-5.184747 0.496375

sample estimates:
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89.71163 92.05581
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Im (coyoteSlength~coyote$gender)

call:
Im(formula = coyote$length ~ coyote$gender)
Coefficients:
(Intercept) coyote$gendermale
89.712 2.344

N

Body length = B, + B,*Gender
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Body Length = < 89.71 ) < If Female )

If Male
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_ 0 If Female
Body Length = 89.71 ( 2.344 ) ( If Male )
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linear.coyote
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double [1]
double [1]
double [36]

/

86 coyotes

2.344

List of length 13

8971234

8971163

2344186
(3292220118932 521..

Female 1: 89.71 + 3.29 =93 cm

>

3
4
5
6

head(coyote)

92.0 female
101.6 female
93.0 female
84.5 female





image161.png
call:
Im(formula = coyoteSlength ~ coyoteSgender)

Residuals:
Min 1Q Median 3Q Max
-18.7116 -4.0558 0.2884 3.9442 12.9442

coefficients:
std. Error t value pr(>|t])

((zntercepr) 89.712 1.010 88.820 e
oyotesgendermale  2.344 1.428  1.641 @
signif. codes: 0 ‘¥#%’ 0.001 ‘**' 0.01 “*' 0.05 .’ 0.1 * ' 1

Residual standard error: 6.623 on 84 degrees of freedom
Multiple R-squared: 0.03107, Adjusted R-squared: 0.01953
F-statistic: 2.693 on 1 and 84 DF, p-value: 0.1045
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Analysis of variance Table

Response: coyoteSlength

of sum sq Mean Sq F value Pr(>F)
coyotesgender 1 118.1 118.147 2.6932 0.1045
Residuals 84 3684.9 43.868
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summary (linear.coyote)

call:
Im(formula = coyoteSlength ~ coyote$gender)

Residuals:
Min 1Q Median 3Q Max
-18.7116 -4.0558 0.2884  3.9442 12.9442
coefficients:
Estimate std. Error t value Pr(>|t|)
(Intercept) 89.712 1.010 88.820 <2e-16 ***
coyoteSgendermale  2.344 1.428 1.641  0.105

signif. codes: 0 ‘***’ 0.001 ‘**' 0.01 ‘*’ 0.05 ‘.’

0.1t
Residual degrees of freedom

mMultiple Adjusted R-squared: 0.01953
F-statistic: 2.693 on 1 and 84 DF, p-value: 0.1045

anova (linear.coyote)
Analysis of variance Table

Response: coyote$length
Df sum Sg Mean sq F value Pr(>F)

coyote$Sgender 1 118.1])118.147 2.6932 0.1045
Residuals 84|3684.9) 43.868

About 3% of the variability
in body length is explained
by gender.

118.1 + 3684.9 = 3803: total amount of variancelin the data

Proportion explained by gender: 118.1/3803 =

0.031
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Assumptions \[ .

residuals :

linear.coyote

© linear. coyote List of 1

coefficients :

3

Named num [1:2] 89.71 2.34
- attr(*, "names")= chr [1:2] "(Intercept)" "coyoteSgendermale"”

Named num [1:86] 3.29 7.29 2.29 11.89 3.29 ...]

par (mfrow=c (2,2))
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anova.log.protein<-aov(logl0O.expression~line,data=protein.stack.clean)
summary (anova.log.protein)

of sum sq Mean sq F value Pr(>F)
Tine 4 2.691 0.6728 8.123 1.78e-05 *¥*
Residuals 73 6.046 0.0828

signif. codes: 0 ‘¥*%*%’ 0,001 ‘¥**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ' 1




image168.png
TukeyHSD (anova.log.protein, "line™)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = logl0.expression ~ line, data = protein.stack.clean)

diff Twr upr p adj
0.25024832 -0.578882494 0.07838585 0.2187264
0.07499724 -0.374997820 0.22500335 0.9560187
0.30549397 0.005493391 0.60549456 0.0438762
0.13327517 -0.166725416 0.43327575 0.7265567
0.17525108 -0.124749499 0.47525167 0.4809387
0.55574230 0.255741712 0.85574288 0.0000183
0
0
0
0

|
LN S 2 2

.38352349 0.083522904 0.68352407 0.0054767
.38049121 0.112162532 0.64881989 0.0015431
.20827240 -0.060056276 0.47660108 0.2023355
.17221881 -0.440547487 0.09610987 0.3841989

mmomoAmon®
Ah
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linear.protein<-1m(logl0.expression~line,data=protein.stack.clean)

anova (linear.protein)

of sum sq Mean sq F value 2
Tine 4 2.691 0.6728 8.12%1.78 5 R
Residuals 73 6.046 0.0828

signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 * ' 1

summary (linear.protein)

call:
Im(formula = To0gl0.expression ~ line, data = protein.stack.clean)
Residuals:

Min 1Q Median 3Q Max

-0.62471 -0.21993 0.02264 0.18263 0.69537

coefficients:
estimate std. Error t value Pr(>|t|)
(Intercept) -0.03144 0.08308 -0.378 0.70617

Tines -0.25025 0.11749 -2.130 0.03655 *

Tinec -0.07500 0.10725 -0.699 0.48661

Tinep 0.30549 0.10725 2.848 0.00571 **

Tinee 0.13328 0.10725 1.243 0.21798

signif. codes: 0 ‘***’ 0.001 ‘**’' 0.01 ‘*’ 0.05 ‘.” 0.1 ‘ " 1

Residual standard error: 0.2878 on 73 degrees of freedom

multiple R-squared: 0.308, Adjusted 2701

F-statistic: 8.123 on 4 and 73 DF, p-val
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Im(loglO.expression~line,data=protein.stack.clean)
call:
Im(formula = 10g10.expression ~ line, data = protein.stack.clean)

coefficients:
(Intercepr)  JineR

linec linen 14
-0.03144 -0.25025 -0.07500 0.30549 0.13328 |





image171.png
Protein Expression

o)





image172.png
> log. expression.means
A [ c o 3
-0.03144412 -0.28169245 -0.10644136 0.27404985 0.10183104
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-0.03144 Line A
—0.28169 Line B
Expression = | —0.10644 Line C
0.327405 Line D
0.10183 Line E
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call:

In(formula = loglo. expression ~ line, data = protein.stack.clean)

coefficients:
(zntercept) Tines Tinec Tinep

Tinee
-0.03144 -0.25025 -0.07500

0.30549 0.13328
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Expression= B, + B4*Line

e '
0 Line A

—0.25025 Line B
Expression = —-0.03144 + | -0.07500 Line C
0.30549 Line D
0.13328 Line E
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linear.protein<-1m(logl0.expression~line,data=protein.stack.clean)
summary (linear.protein)

call:
Im(formula = 1og10.expression ~ line, data = protein.stack.clean)
Residuals:

Min 1Q Median 3Q Max

-0.62471 -0.21993 0.02264 0.18263 0.69537

coefficients:
Estimate std. Error t value Pr(>|t|)

(Intercept) -0.03144 0.08308 -0.378 0.70617

Tines -0.25025 0.11749 -2.130 0.03655 * . . .

line  0l07so0  0l072s -0.699 0.4s6el Proportion of variance explained
Tinep 0.30549 0.10725  2.848 0.00571 **

Tinee 0.13328 0.10725  1.243 0.21798 by Ce” |ines

signif. codes: 0 ‘***’ 0.001 ‘**' 0.01 ‘*' 0.05 ‘.’ 0.1 * ' 1

Residual 2878 on 73 degr

multiple uared: 0.308 justed R-squared: 0.2701
tic: 8. on and

F-statis 73 DF, p-value: 1.784e-05

anova.log.protein<-aov(logl0O.expression~line,data=protein.stack.clepn)
summary (anova.log.protein)

of m_Sq.Mean Sq F value Pr(>F)
Tine 4 91 | 0.6728  8.123 1.78e-05 *¥*
Residuals 73 |6.046 | 0.0828

Ssignif. codes: 0 ‘¥¥*’ 0.001 ‘**' 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘' 1

2.691 + 6.046 = 8.737: total amount of variance.in the data
Proportion explained by gender: 2.691/8.737 =(0.308
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fit.goggles<-aov (attractiveness~alcohol+gender+alcohol*gender, data=goggles)
summary (fit.goggles)

of sum Sq Mean sq F value Pr(>F)

alcohol 2 3332 1666.1 20.065 7.65e-07 ***
gender 1 169 168.7  2.032 0.161
alcohol:gender 2 1978 989.1 11.911 7.99e-05 ***
Residuals 42 3488 83.0

signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 “ ' 1
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Two-Tailed Versus One-Tailed Hyphothesis Tests

Figure A: Figure B:
Two-Tailed Test One-Tailed Test
(Lefe-Tailed Test)

5.0%,
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linear.goggles<-1m(attractiveness~alcohol+gender+alcohol*gender, data=goggles)
summary (linear.goggles)

call:
Im(formula = attractiveness ~ alcohol * gender, data = goggles)
Residuals:

Min 1Q Median 3Q Max
-21.875 -5.625 -0.625 5.156 19.375
coefficients:

Estimate std. Error t value Pr(>|t])

(Intercept) 60.625 3.222 18.818 < 2e-16 ***
alcohol2 pints 1.875 4.556  0.412 0.683
alcohol4 pints -3.125 4.556 -0.686 0.497
gendermale 6.250 4.556 1.372 0.177
alcohol2 pints:gendermale  -1.875 6.443 -0.291 0.772
alcohol4 pints:gendermale -28.125 6.443 -4.365 8.12e-05 ***
signif. codes: 0 ‘“***’ 0.001 “**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ' 1

Residual standard error: 9.112 on 42 degrees of freedom
Multiple R-squared: 0.6111, Adjusted R-squared: 0.5648
F-statistic: 13.2 on 5 and 42 DF, p-value: 9.609e-08
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0 if None 0 if Female
Attractiveness = 60.625+| 1.875 if 2 Pints +< 6.250 ) ( if Male >+
—3.125 if 4 Pints :

0 Otherwise
-1.875 if Male and 2 Pints

—28.125 if male and 4 Pints
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linear.goggles<-1m(attractiveness~alcohol+gender+alcohol*gender, data=goggles)
anova (linear.goggles)

(3332.3+168.7+1978.1)/(3332.3+168.7+1978.1+3487.5) = 0.611

Analysis of variance Table R2=61%

Response: attractiveness
of g Mean sq F value P

alcohol 2[3332.3 1666 15 20.065477.649e-07 *¥*
gender 1| 168.7 2.0323 0.1614
alcohol:gender 21978.1 989 06 11.9113 7.987e-05 ***
Residuals 42| 3487.5

signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘%’ 0.05 ‘.” 0.1 * ' 1
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call:
In(formula = Light ~ Depth * species, data = treelight)

coefficients:
(Intercept) pepth speciesConifer Depth:speciesconifer
7798.57 -221.13 -2784.58 -71.04
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call:
In(formula = Light ~ Depth * species, data = treelight)

Residuals:
Min  1q Median 3 max
-819.9 -366.6 -161.3 377.1 1014.1

coefficients:
Estimate std. Error t value Pr(>Itl)

(Intercept) 7798.57  208.62 26.115 2.38e-16 ***
pepth -221.13 61.80 -3.578 0.00201 **
speciesconifer -2784.58 442,27 -6.296 4.82e-06 ***
Depth:speciesconifer  -71.04 81.31 -0.874 0.39321
signif. codes: 0 ‘*#%’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 * ' 1

Residual standard error: 534.6 on 19 degrees of freedom
Multiple R-squared: 0.9379,  Adjusted R-squared: 0.9281
F-statistic: 95.71 on 3 and 19 DF, p-value: 1.195e-11




image186.png
coefficients:
Estimate std. Error t value pr(>Itl)

(Intercept) 7962.03  231.36 34.415 < 2e-16 ***
pepth -262.17 39.02 -6.567 2.13e-06 ***
speciesConifer -3113.03  231.59 -13.442 1.78e-11 ***
signif. codes: 0 ‘*#%’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 * ' 1

Residual standard error: 531.4 on 20 degrees of freedom
Multiple R-squared: 0.9354,  Adjusted R-squared: 0.929
F-statistic: 144.9 on 2 and 20 DF, p-value: 1.257e-12
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> Im(Light~Depth+Species, data=treelight)

call:
In(formula = Light ~ Depth + species, data = treelight)

coefficients:
(xntercept) Depth speciesconifer
7962.0 -262.2 -3113.0
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df: Power
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n=7 0.84
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(Intercept) Depth speciesconifer
7962.0316 -262.1656  -3113.0265
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(zntercept) Depth speciesConifer Depth:speciesconifer
7798. 56552 -221.12564 -2784.58333 -71.03575
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Simplest
Yy =Bo* By
With 2 factors
Y =Bo t B + B+ BsXyX,
With n factors
Yy=Bo+ B+ y =By + Bixzt -t B X,
Let's not forget the error
Yi = (Bo * By™%) + &

General formula

y; = (model) + error;
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Two-sample comparison of proportions power calculation

n = 18.10585
pl = 0.25
p2 = 0.7
sig.Tevel = 0.05
pover = 0.8
alternative = two.sided

NOTE: n is number in *each® group
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table (cats)
Dance
Training No Yes
Affection as Reward 114 48
Food as Reward 10 28
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bance
Training No Yes
Affection as Reward 70 30
Food as Reward 26 74
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Total observations in Table: 200

cat. dataspance
No | ves
I-

cat. datasTraining

affection as Reward 114 | a8 162
100.440 |  61.560
70.370% | 29.630% 81.000%

Food as Reward 10
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> chisg.test(contingency.table)
pearson’s chi-squared test with vates' continuity correction

data: contingency.table
x-squared = 23.52, df = 1, p-value = 1.236e-06
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> chisq.test(contingency.table, correct.

pearson’s chi-squared test

data: contingency.table
X-squared = 25.356, df = 1, p-value = 4.767e-07
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> fisher.test(contingency.table)
Fisher’s Exact Test for Count Data

data: contingency. table
p-value = 1.312e-06
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

2.837773 16.429686
sample estimates:
odds ratio

6.579265




image208.png
Ll 2]
,] 23 342
[2,] 221 29395




image12.png
probability

probability

0.16
0.14
0.1z
o
0.os
0.06
0.04
0.0z

016
014
012z
0.1
0.08
0.06
0.04
0.0z

Observed result must be in
this range to be
significant

Probability distribution under Ho: sample size 50

N = 50; true value = 40
A significant result only
21% of the time!

30

40

50

60

60

Observed result must be in
this range to be

/—1—\

70

70

significant

80

80

90

90

100

100




image209.png
Pearson’s Chi-squared test

data: enrichment
X-squared = 137.84, df = 1, p-value < 2.2e-16
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Fisher's Exact Test for Count Data

data: enrichment
p-value = 4.335e-14
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

5.480417 13.986300
sample estimates:
odds ratio

8.943972





image211.png
Germ-line stem cell division

The self-renewing division of a germline stem cell to produce a daughter
stem cell and a daughter germ cell, which will divide to form the gametes.

Genelproduct Genelproduct name Organism
Hoxed homeobox C4 Mus muscuius.
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GENEONTOLOGY

Unifying Biology

PANTHER family

family not named pth24326

inhibitor of growth protein pthr10333

zinc finger protein pthr11389

ets pthr11849

Type  Source Synonyms
protein MGl Hox-35
protein MGl 2810011MOGRIK
Ingtl
Pa3NG2
protein MGI
protein MGl Green's luxoid
PLZF
2Mp1a5
protein MGl 1110005E01Rik

8430401F14Rik
em

Hits from
Experiment

Adgalt
Atl1
Cdk19
Cdon
Cecr2
Etv5
Flywch1
Gnpda2
Hoxc4
Ing2
ligp1
Map3k9
Mypop
Rnf6
Serinc1
Stra8
Trp73
Zbtb16




image212.png
GORILLA

GO tem Pvalue DR g-value Enrichment (N.B.u.b)
[cot0s3360 lregulation of ion transport T T1.86E4 120 (18347,572.168.22)
[coo0s76s regulation of ion rausmembrane transport SIES 25EL 511 (18347.363.168.17)
[co00ss7er lregulation of ransmembrane transport T36E-8 3394 191 (18347378.168.17)
|Go-0007268 [y maptic transmussion 395E-7 T36E3 113 (18347.476.168.18)
[Go-00ss010 [membrane depolarization during action potential 117E6 33E3 17.24 (18347.38,168.6)
|co-00:3700 [single organism signalmg 347E6 T98E3 303 (18347,792,168.20)
|Go-0001508 [ection potenial 33E6 699E3 10.92 (18347.70.168.7)
[Go003052 [signaling 3.68E-6 636E3 3,02 (18347.795.168.22)
[co00nie [eve photoreceptor cell development T18E6 TIE2 18.20 (18347.30.168.5)
[Go-0033e1 Jregulation of membrane potential T89E6 TO9E-2 135 (18347319.168.13)
[Go-0002261 cell development 1E5 T26E2 17.06 (18347.32,168.5)
[co-0007267 [eell-cell signalng 2.14E-5 247E2 2.88 (18347.759.168.20)
[Go-0051899 [membrane depolarization 217ES 23E2 10,57 (18347.62.168.6)
[cooossTas [sodium ion trznsmembrane transport 133E5 23E2 §22 (18347.95.168.7)

[positive regulation of calcium ion transport 398ES 3.66E-2 757 (18347.101.168.7)





image213.png
o O e 0O o O O Oee o

SRR1179533.2884_0021:5 :11782 - 9 54434159 u
SRR1179533.2884_0021 :11782 - 9 54434156 u
SRR1179533.2817_0021 :11753 + 5 77694920 m
SRR1179533.2884_0021 :11782 - 9 54434153 u
SRR1179533.2817_0021:5:1:1355:11753 + 5 77694916 m
SRR1179533.2854_0021 19738 - 5 24348106 u
SRR1179533.2884_0021: :11782 - 9 54434146 u
SRR1179533.2803_0021:5: l 1353:10123 - 9 108500170 u

Mot muscudos GRC38 v 18:80121112.80155769 (3.6 )

proken_codna A proken_odng TRNA'AG2-001

80,125,000 80,130,000 80,135,000 0,140,000 80,145,000 80,150,000 80,155,000




image214.png
Gene  Sample Group Unmeth Meth

Pnot AL-1174 AL 166 443
Pnot AL-1180 AL 116 276
Pnot AL-1220 AL 108 305
Pnot DR-1181 DR 188 332
Pnot DR-1185 DR 204 320
Pnot DR-1197 DR 248 342
Pnpla5  AL-1174 AL 287 254
Pnpla5  AL-1180 AL 121 97
Pnpla5  AL-1220 AL 163 187
Pnpla5 DR-1181 DR 144 224
Pnpla5 DR-1185 DR 116 240

Pnpla5 DR-1197 DR 173 334
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pearson’s chi-squared test

data: dna.methylation.Pnplas. or[,
X-squared = 3.8193, df = 2, p-value = 0.1481
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pearson’s Chi-squared test

data: dna.methylation.Pnol.oR[, 3:4]
X-squared = 4.0289, df = 2, p-value = 0.1334
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Pearson’s Chi-squared test

data: dna.methylation.Pnplas.AL[,
x-squared = 5.3236, df = 2, p-value

1
0.06982
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pearson’s chi-squared test

data: dna.methylation.Pnol. AL[, 3:4]
X-squared = 1.2487, df = 2, p-value = 0.5356
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Two-sample comparison of proportions power calculation

n = 96.92349
pl = 0.07692308
p2 =0
sig.Tevel = 0.05
pover = 0.8

alternative = two.sided

NOTE: n is number in *each* group
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picture real.spider
25

## enter data

1 45
picture <- c(25,35,45,40,50) ; :2 ;2
real.spider <- c(45,40,55,55,65) 4 40 55
H 50 65

spider.data<-data.frame (picture=picture, real.spider=real.spider )
head (spider.data)

# quick look
boxplot (spider.data)

> apply(spider.data, 2, mean)

# extract data for power picture real.spider .

i 39 52 1
apply(W, 2, mean) > apply(spider.data, 2, sd) = =
apply (spider.data, 2, sd) picture real.spider

9.617692  9.746794
# power
power.t.test(n = NULL, delta = 52-39, sd = 9.7, sig.level = 0.05,
power = 0.8, type = wpl_e r Two-sample T test power calculation
alternative = "two.sided")
n = 9.79972
delta = 13
sd = 9.7
sig.level = 0.05
power = 0.8

alternative = two.sided

NOTE: n is number in *each* group
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> tapply(coyoteslength,coyotelgender, shapiro.test)
$°female’

shapiro-wilk normality test
data: x[[i1]
W = 0.97001, p-value = 0.3164
Smale

shapiro-wilk normality test

data: x[[i]]
W = 0.98446, p-value = 0.819
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Levene's Test for Homogeneity of Variance (center = mean)
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image63.png
Two Sample t-test

data: coyoteSlength by coyoteSgender
© = -1.6411, af = 84, p-value = 0.1045
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
Zs.184747 0.436375
sample estimates:
mean in group female mean in group male
29.71163 52.05581
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> apply(working.memory[,2:3], 2, shapiro.test)
Splacebo

shapiro-wilk normality test
data: newx(, i1
W = 0.95914, p-value = 0.6774
$DA. depletion

shapiro-wilk normality test

data: newx(, i1
W = 0.94274, p-value = 0.4181
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Paired t-test

data: working. memorysplacebo and working. memorySDA. depletion
T - 8.6161, df = 14, p-value = 5.715e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
6.308997 10.491003
sample estimates:
mean of the differences
8.4
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one sample t-test

data: working. memory$pifference
T - 8.6161, df = 14, p-value = 5.715e-07
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
6.308997 10.491003

sample estimates:
mean of x

8.4
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P(AB)=P(A) x P(B)
For example:

P(2 Heads) = P(head) x P(head) = 0.5 x 0.5 = 0.25
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protein<-read.csv("protein.expression.csy”, header=T)
protein.stack<-melt (protein) ## reshape2 package ##
colnames (protein.stack)<—c("line", "expression”)
protein.stack.clean <- na.omit(protein.stack

head (protein.stack.clean)

Tine expression

108020 005 1.00 075 1A o
30098042101 0.82 1,26 b 3 A o5
R oA o3
5 0.75 0.32 0.47 0.49 0.30 6 A 1'43

stripchart (protein.stack.clean$expression~protein.stack.clean$line, vertical=TRUE,
method="jitter", las=1, ylal rotein Expression”,pch=16,col=1:5)

expression.means<-tapply (protein.stack.cleanSexpression, protein.stack.cleansline, mean)
segments (1:5-0.15,expression.means, 1:5+0.15, expression.means, col="black", lwd=3)

boxplot (protein.stack.cleanSexpression~protein.stack.clean$line, col=rainbow(5),
ylab="Protein Expression",las=1)

beanplot (protein.stack.cleanSexpression~protein.stack.clean$line, ,ylab="Protein Expression”, las=1)

## beanplot package ##

bobt
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tapply (protein.stack.clean$expression, protein.stack.clean$line, shapiro.test)

$°A°
shapiro-wilk normality test
data: X[[i]]
W = 0.92957, p-value = 0.3755
s8
shapiro-wilk normality test
data: X[[i]]
W = 0.95351, p-value = 0.6888
sc
shapiro-wilk normality test

data: X[[i]]
W = 0.81968, p-value

so

shapiro-wilk normality test

data: X[[i]]
W = 0.75307, p-value £ 0.0003549

SE
shapiro-wilk normality test

data: x[[i]]
W = 0.96707, p-value

0.7411




image75.png
beanplot (protein.stack.cleanSexpression~protein.stack.cleansline, ylal

Protein Expression"”, las=1)

stripchart (protein.stack.clean$expression~protein.stack.clean$line, vertical=TRUE,
method="jitter", las=1, ylab="Protein Expression",pch=16,col=rainbow(5),log="y")

expression.means<-tapply.(protein.stack.cleansexpression.protein.stack.cleansline, mean)
segments (1:5-0.15, expression.means, 1:5+0.15, expression.means, col="black", lud=3)

boxplot (protein.stack.cleanslogl0.expression~protein.stack.cleansline, col=rainbow(5),
ylab="Protein Expression”,las=1)
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tapply (protein.stack.clean$loglO.expression, protein.stack.clean$line, shapiro.test)
s -
shapiro-wilk normality test

data:  x[[i]]
W = 0.85425, p-value

S8
shapiro-wilk normality test
data: Xx[[i]]
W = 0.94584, p-value = 0.5773
sc
shapiro-wilk normality test

data: Xx[[i]]
W = 0.96571, p-value

o
Shapiro-wilk normality test

data: x[[i]]
W = 0.98684, p-value

SE
shapiro-wilk normality test

data:  x[[i]]
W = 0.93134, p-value = 0.205
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Levene's Test for Homogeneity of Variance (center = mean)
DE F value Pr(>F)

group 4 1.2012 0.3177
73
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of sum sq Mean sq F value  Pr(>F)
line 4 2.691 0.6728 8.123 1.78e-05 ***
Residuals 73 6.046 0.0828

Signif. codes: 0 ****’ 0.001 ***’ 0.01 ‘*’ 0.05 *.’ 0.1 * ' 1
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Pairwise comparisons using t tests with pooled SD

data: protein.stack.cleanSlog.expression and protein.stack.clean$line

L3655 -
0000 1.0000 - -
0571 1.9e-05 0.0017

0000 0.0062 0.331% 0.7675

Mmoow
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value adjustment method: bonferroni
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