
An Introduction to Unix
Sarah Inglesfield, Simon Andrews

v2024-08

Terminology and Distributions

• Admin tools

• Bundled Software

• Support duration / cost

Types of Linux installation

Bare
Metal

• Physical hardware
• CD / DVD / USB / Network installation
• Can be physically accessible (desktop) or remote (server / cluster)

Virtual
Machine

• Runs within another operating system
• Portable / disposable
• Install from ISO / Network

Cloud
• Virtual machine on someone else's hardware
• Amazon / Google are the main providers
• Range of available hardware

Connecting to Linux
Installations

Local vs Remote Connections

User 1’s Machine

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Intranet

Storage Array

Head Node
Private Network

User 2’s Machine
User 1’s
Machine

User 2’s
Machine

username:
password:

Local Linux Machine

Local Machine e.g. working on clusters

Remote Linux Machine

username:
password:

?

Connecting to a remote Linux installation

Local Machine

Remote
Linux

Machine

SSH
"Secure shell"

Username + Password + 2FA
or

Username + SSH key + 2FA

How?

OSX or
Linux

Use the terminal program which
comes with the OS

Windows
Git Bash (https://gitforwindows.org/)
PuTTY (https://www.putty.org/)

What?

• Encrypted connection
• Text based interface

SSH + Password connection
• ssh username@server.address

• [Will be promoted for password]

SSH + Key connection

• ssh -i [key_file.pem] username@server.address

SHH Using PuTTY

SHH with Graphical Connections

• X11

• Sits on top of SSH
https://www.xquartz.org/

https://sourceforge.net/projects/vcxsrv/

SHH
= Just Text

SHH+ X11

& Text

Remote
Linux

Machine

ssh -YC -i [key_file.pem] username@server.address

Single application windows

Virtual Desktop
• VNC
• Stand alone application or
• Browser based desktop

mailto:username@server.address

Exercise 1

Running programs in the
BASH shell

Launching programs in Linux

Graphical Command Line

Requires?
Full Graphical Environment

e.g. virtual desktop
Command Line Linux

Environment

How to Launch a program? Click an icon
Type commands into an

interpreter

Works for:
Graphical Programs
Non-Graphical Programs

Two major methods:

Most data processing and remote access will be command line based

For this we need an interpreter….

Shells
A shell is a command line interpreter, used to launch software in Linux

$

$ </>

Text commands are used to launch programs

Many different shells available:
• Largely similar in how they launch programs
• Differ in some of their automation/ other clever functions

We will use the most popular shell: BASH

What Does a Shell Provide?

Job control

History

$

Command line editing and construction tools

Automation

• Scripting language

• Variables, functions etc

What does a Shell look like?

We will be using a graphical terminal running BASH

Run the next program!

When the program ends control will return to the shell

Press return - the program will run

Add on any options the program needs

Type the name of the program you want to run

Running programs

Running programs
student@ip1-2-3-4:~$ ls

Desktop Documents Downloads examples.desktop Music

Pictures Public Templates Videos

student@ip1-2-3-4:~$

Command prompt - you can't enter a command unless you can see this

The command we're going to run (ls in this case, to list files)

The output of the command - just text in this case

Running graphical programs

student@ip1-2-3-4:~$ xeyes

student@ip1-2-3-4:~$

Note that you can't enter another command
until you close the program you launched

The structure of a unix command

ls -ltd --reverse Downloads/ Desktop/ Documents/

Program
name

Switches Data
(normally files)

Each option or section is separated by spaces. Options or files with spaces in must be put in quotes.

Command line switches
To change the behaviour of the program must write the appropriate switch

Short Form Long Form

Minus plus single letter
.

-x -c –z
.

Can be combined -xcz

Two minuses plus a word
.

--extract --gzip
.

Can’t be combined

Binary (on/off) + Additional Value

Switch alone specifies the behaviour
--gzip

An additional value is provided after the switch
.

-f somfile.txt (specify a filename)

--width=30 (specify a value)
.

Use a [space] or = to separate

• Switches can be binary (on/off) or take an additional value

• Different options are represented by short and/or long forms (usually both)

Figuring Out Options…

Core Programs Non-Core Programs

Included with the install Additional installs e.g analysis tools

Manual page (always) Help Page (usually)

man [program] [program] --help (or -h)

Programmes usually come with documentation for their options and usage

These pages all follow a very similar structure…

Manual Pages

Name

Synopsis

Description

Examples

Help Pagesvs

Exercise 2

Understanding Unix
File Systems

Unix File Systems vs Other File Systems

Standard OS File System

Hierarchical Directories

Each Directory can contain files

Use drive Letters

Need file extensions e.g. .txt

A Familiar Picture…

Same in Unix?

A Simple Unix Filesystem

= Directory containing all users home directories

= A Directory – note names are case sensitive

= Root Directory = Always the top of the file system

= Directory containing all users home directories

= A text file we want to work with

= A USB stick added to the system

How do we write this in our shell? = Path $ ls /home/simon/Documents/test.txt

Navigating The File System
• Every Unix session has a ‘working directory’

• This is a folder where the shell looks for file paths

• Your initial working directory will normally be your home directory (eg /home/user)

Task Command

What is my current working directory? pwd

I want to make a new directory mkdir [name of directory to make]

I want to move into a different directory cd [location to move to]

I want to go home cd

• There are some useful commands to help navigate the system:

[andrewss@server ~]$ pwd
/home/andrewss

[andrewss@server ~]$ mkdir Simon

[andrewss@server ~]$ cd Simon
[andrewss@server Simon]$ pwd
/home/andrewss/Simon

[andrewss@server Simon]$ cd
[andrewss@server ~]$ pwd
/home/andrewss

Navigating The File System – An Example

Specifying File Paths

1. Absolute paths from the top of the file system e.g.
/home/simon/Documents/Course/some_file.txt

2. Relative paths from your current directory e.g.

if we are in Course = some_file.txt

if we are in Documents = Course/some_file.txt

3. Paths using typing shortcuts

Options:

/

home

Simon

Documents

How can we refer to this file?

Course

some_file.txt

Another_Course

/

home

Simon

Documents

Course

some_file.txt

Specifying file paths - Shortcuts

Some Useful Shortcuts:

~ The current user's home directory

. The current directory

. . The directory immediately above the current directory

~/Documents/Course/some_file.txt

../Course/some_file.txt

If we were in Another_Course
Another_Course

Specifying File Paths – Question:

/

home

sarah

Teaching

linux

QC

multiomics

Fun_ideas.txt

Which Path (or Paths!) will specify my “Fun_ideas.txt”?

A

B

C

/home/sarah/teaching/multiomics/Fun_ideas.txt

~/Teaching/multiomics/Fun_ideas.txt

You

are

here

multiomics/Fun_ideas.txt

It’s easy to make mistakes when typing paths

Command line completion…

…Is Basically the shell's version of Autocomplete

• Most errors in commands are typing errors in either
program names or file paths

• Shells (ie BASH) can help by completing paths for us

Hooray for the TAB Key!

Type a partial path then press the TAB key

https://www.datamation.com/trends/tech-comics-is-auto-complete-enough/

How?

https://www.datamation.com/trends/tech-comics-is-auto-complete-enough/

You should ALWAYS use TAB completion to fill in paths for
locations which exist so you can't make typing mistakes

(so it won't work for output files!)

inglesf

Documents

Downloads

Do-re-me.txt

Music

Published

Command line completion- Examples

Public

Templates

Mi-so-la.txt

You are here

How Tab Complete Will Work:

T [TAB] → Templates

P [TAB] → Publi

Do [TAB] → [beep]
.

Do [TAB] [TAB] → Documents Downloads Do-re-me.txt
.

Doc [TAB] → Documents

inglesf

Documents

Downloads

Do-re-me.txt

Music

Published

Command line completion- Question

Public

Templates

Mi-so-la.txt

You are here

Which Is the Shortest Way to Specify Mi-so-la.txt?

A

B

C

M[TAB]

Mi [TAB]

Mi-so-la [TAB]

Specifying Multiple File Paths – Wildcards

Use Wild cards to substitute for unique parts of related file paths

Wildcard Meaning Example

? One of Any character 202?_report.txt

* Any number of Any characters 20*_report.txt

2024_report.txt 2023_report.txt 2019_report.txt

Sometimes we want to refer to more than one file / location

Common part of name
Unique part of name

Could be more ambiguous here e.g. 20* , *.txt or even *

But it depends what else this path would capture!

• Shell will expand them before passing them on to the program

2024_report.txt 2023_report.txt 2019_report.txt

Using Wildcards

How do we use them:

At any point in the path

Multiple wildcards can be in the same path

Do make sure expression captures files of interest specifically!

Command line completion won't work after the first wildcard

ls -ltd --reverse Downloads/ Desktop/ Documents/

Program
name

Switches Data
(normally files)

D*

My Working Directory:

mon_500.txtmon_1.txt mon_2.txt mon_3.txt Monday

Tuesday tue_1.txt tue_2.txt tue_3.csv

Using Wildcards - Questions

How can I list only text files from Tuesday?

ls Tuesday/*txt

A

B

C

ls Tuesday/*

ls Tuesday/?.txt

My Working Directory:

mon_500.txtmon_1.txt mon_2.txt mon_3.txt Monday

Tuesday tue_1.txt tue_2.txt tue_3.csv

Using Wildcards - Questions

What files will “ls Monday/mon_?.txt” return?

A

B

C

mon_1.txt mon_2.txt mon_3.txt

mon_500.txtmon_1.txt mon_2.txt mon_3.txt

tue_1.txt tue_2.txt tue_3.csv

My Working Directory:

mon_500.txtmon_1.txt mon_2.txt mon_3.txt Monday

Tuesday tue_1.txt tue_2.txt tue_3.csv

How can I list all the text files in both Monday and Tuesday?

ls */*txt

A

B

C

ls *

ls ?day/*

Using Wildcards - Questions

Manipulating files

You will spend a lot of time managing files on a Linux system

Finding files

Deleting files

Copying filesMoving or renaming files

Editing text files

Viewing files
(normally text files)

$

Viewing Files
Simplest solution

cat [file] Sends the entire contents of a file (or multiple files) to the screen.

Quick look

head -[number] [file]

tail -[number] [file]

Look at the first X lines of the file
Look at the last X lines of the file

More scalable solution

less [file] A 'pager' program, sends output to the screen one page at a time

–S A useful switch that stops line wrapping

Navigation inside less: Return / j = move down one line
k = move up one line
Space = move down one page
b = go back one page
/[term] = search for [term] in the file
q = quit back to the command prompt

Editing files

• Lots of text editors exist, both graphical and command line

• Many have special functionality for specific content (C, HTML etc)

• nano is a simple command line editor which is always present

nano [filename] edits if file exists, creates if it doesn't

Moving / Renaming files

• Use mv command for both (renaming = moving from one name to another)

mv [existing file or directory] [new name/location]

• Good to Know….
• If “location” is a existing directory, the file is moved there with its existing name
• Moving a directory moves all of its contents as well
• Shortcuts can help to form the path of where you want to move files to/from

The return of useful shortcuts!

. The current directory Useful for “pull” moves

. . The directory immediately above the current directory Useful for “push” moves

Command Outcome

mv old.txt new.txt

mv old.txt ../Saved/new.txt

mv old.txt ../Saved/

Start

my_dir

Saved

old.txt

my_dir

new.txt

my_dir

Saved

old.txt

my_dir

Saved

new.txt

You

are

here

Moving / Renaming files – “Push”

Start Command Outcome

mv ../my_dir/old.txt .

my_dir

Saved

old.txt

my_dir

Saved

old.txt

You

are

here

Moving / Renaming files – “Pull”

• Use cp command on a single file

cp [existing file] [new name/location]

Copying a file

Start Command Outcome

cp old.txt new.txt

my_dir

old.txt

my_dir

old.txt

new.txt

Start Command Outcome

cp -r ../Saved NewDir

cp -r ../Saved ExistingDir/

(only if ExistingDir exists)

my_dir

Saved

my_dir

Saved

Copying Directories with recursive copy

cp -r [existing directory] [new name/location]

my_dir

test.txt

ExistingDir

test.txt

NewDir

test.txt

my_dir

Saved

test.txt

ExistingDir

*remember the original “Saved” directory will also still exist

Copying files: Match the Command with the Desired Action

Working Directory Action

my_dir 1) Copy old.txt to Saved

my_dir
2) Copy old.txt to Saved

and call it new.txt

Saved 3) Copy old.txt to Saved

Command

A) cp old.txt ../Saved/new.txt

B) cp ../Saved/old.txt .

C) cp old.txt ../Saved/

my_dir

Saved

old.txt

Start Command Outcome

ln -s test.txt test2.txt

Linking rather than copying

• Copy duplicates the data in a file
• Can be a problem with big data files

• Links are a way to do 'virtual' copies

• Two types of link, hard links and soft (or symbolic) links
• We will always use soft links as they're more flexible

mydir

ln -s [from] [to]

test2.txt

test.txt

mydir

test.txt

Location BLocation A

Same file

Working with symbolic links

When you list a link you can see where it points…

$ ls -l test2.txt

lrwxrwxrwx 1 babraham babraham 8 Sep 11 16:27 test2.txt -> test.txt

$ cat test.txt

This is a test file

$ cat test2.txt

This is a test file

…but you can use it like a file

=

mydir

file1.txt

file2.txt

mysubdir

file3.txt

file4.csv

yet_another_file.txt

Finding Things with find

find [starting point] [global options] [other arguments]

Example:

find .–maxdepth 1 –name ‘*.txt’

Tests of what to look formodify the behaviour of findLocation to start from

• Find a given file name
-name [filename]

• Find matches belonging to a user
-user [username]

• Find matches of a certain type
- d –f

• How to handle symbolic links
-H, -L, -P
.

• How to handle how deep to
search in the filesystem
-maxdepth -mindepth

Deleting files

Examples
• rm test_file.txt test_file2.txt

• rm -r Old_directory/

Use the rm command to delete files and directories (and all of their contents)

rm [name(s) of file to delete]

rm –r [name(s) of directory to delete]

Linux has no undo.
Deleting files has no recycle bin.
Linux will not ask you "are you sure"

Deleting files – With Wildcards

rm *.txt

You can use the wildcard shortcuts to delete multiple files or directories

be VERY careful using wildcards

rm * .txt
Accidental space

Always run ls first to see what will go

Exercise 3

More advanced BASH
usage

What we know already

• How to run programs
• How to modify the options for a program using switches

• How to supply data to programs using file paths and wildcards

How Can we Usefully Build on this?

What else can we do…

All possible with a bit more knowledge of the BASH Shell

Record the output
of programs

Check for errors in programs
which are running Link programs together

into small pipelines

Automate the running of
programs over batches of files

$

STDOUT

STDERRprogram

STDIN

By default STDOUT and STDERR are connected to your shell

so when you see text coming from a program it's from these streams

Three data streams exist for all Linux programs:

a way to send data into the program

a way to send expected data out of the program

a way to send errors/warnings out of the program

Standard
Output

Standard
Error

Standard
Input

Communicating with Programs

Communicating with Programs

Redirecting standard
streams to files

Redirecting standard
streams to other programs

Redirecting standard streams

You can redirect using arrows at the end of your command

$ find . -print > file_list.txt 2> errors.txt

> [file] Redirects STDOUT

2> [file] Redirects STDERR

> [file] 2>&1 Sends STDERR into STDOUT

< [file] Redirects STDIN

$ ls

Data Desktop Documents Downloads errors.txt examples.desktop file_list.txt
Music Pictures Public Templates Videos

$ head file_list.txt

.

./Downloads

./Pictures

./Public

./Music

Throwing stuff away

• Sometimes you want to be able to hide output
• STDOUT - I just want to test whether something worked

• STDERR - I want to hide progress / error messages

Linux defines a special file /dev/null
Which just discards all data sent to it

Throw away the STDOUT program > /dev/null

Throw away the STDERR program 2> /dev/null

Linking programs together with pipes

UNIX was designed to have lots of small programs doing specific jobs

Do this by connecting STDOUT from one program to STDIN on another

Which could be linked together to perform more advanced tasks

$ ls | head -2

Data

Desktop

This is done with Pipes |

ect.

Useful programs for pipes

• You can theoretically use pipes to link any programs

• But there are some which are particularly useful, like:

wc to do word and line counting

grep to do pattern searching

sort to sort things

Uniq to deduplicate things

less to read large amounts of output

zcat/gunzip/gzip to do decompression or compression

Small example pipeline

Take a compressed fastq sequence file, extract from it all of the entries
containing the telomere repeat sequence (TTAGGG) and count them

$ zcat file.fq.gz | wc -l

179536960

$ zcat file.fq.gz | grep TTAGGGTTAGGG | wc -l

3925

zcat file.fq.gz | grep TTAGGGTTAGGG | wc -l

Decompress the fastq file Find the pattern Count the matches

Iterating over files

*.txt

When processing data often need to re-run the same command multiple times for
different input/output files.

Some programs support being provided with multiple input files i.e. wildcards!

*.txt

X

Instead we use the automation features of the BASH shell to automate running these programs

BUT MANY DON’T!

ect.

The BASH for loop

Use Simple looping construct

Temporary

Environment

Variable

command

Loop over these to do some function
for each in turn

Start with a set of files (or values)

Write commands using a special variable

Takes on the value of each item in turn

What? How?

Example of BASH for loops

for file in *txt

do

echo $file

grep .sam $file | wc -l

done

Job Control

• By default you run one job at a time in a shell

• Shells support multiple running jobs

States of job:

Running - foreground shell has the attention of the job

Running - background output goes to the shell but other jobs can run

Suspended job exists but is paused, consumes no CPU

Running - disconnected output is no longer attached to the shell

jobs lists the jobs in this shell

Job Control

Working Directory

prog_to_run starts in foreground

prog_to_run & starts in background

Control + Z suspends the current job

bg

fg

Send a job to the background

Bring a job to the foreground

nohup prog_to_run

nohup prog_to_run > log.txt &

disconnects, logs to nohup.out
… or redirect to your choice of file
Means it can’t be killed when terminal exits

More Extended Job Control on Clusters

User 1’s Machine

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Intranet

Storage Array

Head Node
Private Network

User 2’s Machine
User 1’s
Machine

User 2’s
Machine

Control on a single machine Control on a Cluster

• Same for small jobs we can run on the Head Node
• e.g. nohup, fg, bg

• Need a bit more control for bigger jobs
• Workload managers
• Workflow managers

vs

Head Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Workload managers – Cluster Queues

Job 1

Job 2

Job 3 Job 1

Job 3
…

Job 2

Workload managers – Cluster Queues

ssub

-o f.log

--cores=2

--mem=5G

fastqc data.fq.gz

fastqc data.fq.gz

Submitting a job directly Submitting a job to a workload manager

Workflow Mangers – Beyond 1 job…

Fastq files

Trimmed
Fastq files

QC reports

Trim

QC

Map

QC

Bam files

QC reports

Multi-QC

Summary
report

Imagine you have generated
RNAseq data for 4 samples…

…A lot to coordinate!

Workflow Mangers

• Larger Scale Automation

• Multiple Programs

• Multiple Files

• Integrates with Clusters

Turn this…

…Into this!

nf_rnaseq --genome GRCh38 *fastq.gz

executor > slurm (21)

[15/929bd5] process > FASTQC (lane8_DD_P9_TGACCA_L008) [100%] 4 of 4 ✔

[b9/674ced] process > FASTQ_SCREEN (lane8_FF_P4_ATCACG_L008) [100%] 4 of 4 ✔

[ca/b39d14] process > TRIM_GALORE (lane8_FF_P9_CGATGT_L008) [100%] 4 of 4 ✔

[c0/4dcaf9] process > FASTQC2 (lane8_FF_P9_CGATGT_L008) [100%] 4 of 4 ✔

[58/879cf5] process > HISAT2 (lane8_FF_P9_CGATGT_L008) [100%] 4 of 4 ✔

[c4/cfe1f1] process > MULTIQC [100%] 1 of 1 ✔

Completed at: 05-Feb-2021 08:47:47

Duration : 4m 2s

CPU hours : 1.9

Succeeded : 21

Exercise 4

