Extracting Biological Information from Gene Lists

Simon Andrews, Laura Biggins, Boo Virk

simon.andrews@babraham.ac.uk

laura.biggins@babraham.ac.uk

v2024-11

Programme

- The theory and practice of gene set enrichment
- Gene set enrichment practical
- Presenting results
- Dealing with artefacts and biases
- Motif analysis
- Motif analysis practical

Standard Gene List Output

Rank	Well	Gene Name	P-value	GPR Fold Change	GPR Fold Change Graph	Control 1	Control 2	Control 3
1	E10	Tnfrsf18	0.006689	-7.708526		26.291138	25.415058	25.808804
2	E08	Ly9	0.009059	-7.238955		25.672344	24.660522	24.845451
3	E01	Tollip	0.081636	-14.769324		27.33491	31.586285	27.811256
4	H10	Stat3	0.092269	-2.377623		25.84287	26.284285	26.874344
5	F03	Nt5e	0.097510	-1.511391		25.420982	26.977015	25.08718
6	C01	Tnfrsf1b	0.099746	-4.026225		40.0	37.44099	36.49696
7	A09	Ccnd3	0.100523	3.755167		30.837646	30.475822	30.468536
8	D11	Nfatc2	0.124354	5.534758		28.610485	29.669998	30.464863
9	D05	<u>Il2ra</u>	0.132781	-1.549923		37.23	35.44099	35.49696
10	H04	Sema4a	0.133853	-5.447223		36.48277	36.928036	32.373432
11	D01	Tnfsf4	0.144796	6.022623		21.888157	20.845629	22.976254
12	B10	Nfat5	0.145780	8.067699		30.449022	30.795446	30.850525
13	D07	Cd3e	0.166966	5.300400		28.893595	28.981432	30.581322
14	H05	Nrp1	0.171774	3.802116		30.856043	30.58041	30.099209
15	G05	<u>Cd53</u>	0.180716	-2.249306		33.33491	33.586285	33.811256
16	D09	<u>Cd28</u>	0.188418	-4.313547		24.510563	23.23	20.464325
17	D02	Pou2af1	0.199099	2.734895		26.449022	22.795446	23.850525
18	F09	Gadd45b	0.209415	-1.859485		25.837646	25.475822	24.468536
19	D04	<u>S100a6</u>	0.221836	-1.869103		22.482086	24.83037	23.917696
20	B07	Stat6	0.233153	-1.493636	1	33.44925	32.16483	32.71563

Descriptions aren't always informative

Gene	Description	
Gpr55	G protein-coupled receptor 55 [Source:MGI Symbol;Acc:MGI:2685064]	
Ncl	nucleolin [Source:MGI Symbol;Acc:MGI:97286]	
Aspm	asp (abnormal spindle)-like, microcephaly associated (Drosophila) [Source:MGI Symbol;Acc:MGI:1334448]	
Tnfsf4	tumor necrosis factor (ligand) superfamily, member 4 [Source:MGI Symbol;Acc:MGI:104511]	
Ephx1	epoxide hydrolase 1, microsomal [Source:MGI Symbol;Acc:MGI:95405]	
Setx	senataxin [Source:MGI Symbol;Acc:MGI:2443480]	
Angptl2	angiopoietin-like 2 [Source:MGI Symbol;Acc:MGI:1347002]	
Ggta1	glycoprotein galactosyltransferase alpha 1, 3 [Source:MGI Symbol;Acc:MGI:95704]	
Dab2ip	disabled homolog 2 (Drosophila) interacting protein [Source:MGI Symbol;Acc:MGI:1916851]	
Neb	nebulin [Source:MGI Symbol;Acc:MGI:97292]	
Ermn	ermin, ERM-like protein [Source:MGI Symbol;Acc:MGI:1925017]	
Ckap5	cytoskeleton associated protein 5 [Source:MGI Symbol;Acc:MGI:1923036]	
Prr5l	proline rich 5 like [Source:MGI Symbol;Acc:MGI:1919696]	
Arhgap11a	Rho GTPase activating protein 11A [Source:MGI Symbol;Acc:MGI:2444300]	
Bub1b	budding uninhibited by benzimidazoles 1 homolog, beta (S. cerevisiae) [Source:MGI Symbol;Acc:MGI:1333889]	
Prnp	prion protein [Source:MGI Symbol;Acc:MGI:97769]	
Fam102b	family with sequence similarity 102, member B [Source:MGI Symbol;Acc:MGI:3036259]	

Gene summary sites are useful for single genes

<u>TNFSF4</u> - tumor necrosis factor (ligand) superfamily...

Homo sapiens Synonyms: CD134L,

CD252, GP34,

Glycoprotein Gp34, OX-40L, ...

Biagi, E. et al., Godfrey, W.R. et al., Wang, X. et al., Takasawa, N. et al., Ito, T. et al., et al.

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. <u>Read more.</u>

Disease relevance of TNFSF4

- In two independent human populations, the less common allele of SNP rs3850641 in TNFSF4 was significantly more frequent (P <or= 0.05) in individuals with myocardial infarction than in controls [1].
- However, <u>cytotoxic T lymphocyte</u> (CTL) clones specific for <u>Epstein-Barr virus</u> (EBV)-transformed autologous lymphoblastic <u>cell lines</u> (LCLs) induced both OX40 and <u>OX40L</u> expression after antigen or <u>T cell</u> receptor (TCR) stimulation [2].
- We have cloned and sequenced a cDNA encoding gp34, a novel glycoprotein expressed in cells bearing human <u>T-cell</u> leukemia virus type I (<u>HTLV-I</u>) [3].
- On the other hand, <u>gp34</u> was not expressed on these cells, although its expression is also known to be associated with <u>HTLV-I-infection [4]</u>.
- Regulation of <u>T cell</u> activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing <u>inflammatory bowel disease</u> with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein [5].

High impact information on TNFSF4

- We therefore conclude that Tnfsf4 underlies <u>Ath1</u> in mice and that polymorphisms in its human homolog <u>TNFSF4</u> increase the risk of <u>myocardial</u> <u>infarction</u> in humans [1].
- The <u>quantitative trait locus</u> region encompasses 11 known genes, including Tnfsf4 (also called <u>Ox40</u>] or Cd134l), which encodes OX40 ligand [1].
- When activated in the presence of leukemic CLL <u>B cells</u>, <u>T cells</u> rapidly upregulate CD30 through an <u>OX40 ligand</u> and <u>interleukin 4</u> (IL-4)-dependent mechanism [6].
- Here we report that <u>TSLP induced</u> human DCs to express <u>OX40 ligand</u> (<u>OX40L</u>) but not IL-12 [7].
- <u>TSLP-induced</u> OX40L on DCs was required for <u>triggering</u> naive CD4(+) <u>T cells</u> to <u>produce IL-4</u>, -5, and -13 [7].

Biological context of TNFSF4

- This study suggests a possible function of <u>OX40L</u> / OX40, through T cell-T cell interaction, in the reactivation of memory <u>T cells</u> in an autocrine manner, with implications for the pathogenesis of viral infections and neoplasms [2].
- These results indicated that rat OX40L can provide an efficient costimulation for rat <u>T cells</u> and that it may be involved in HTLV-1-associated <u>pathologies</u> in the rat system as has been suggested in the human system [8].
- Enhancing the immunostimulatory function of <u>dendritic cells</u> by <u>transfection</u> with mRNA encoding OX40 ligand [9].
- <u>Cell adhesion</u> assay was performed and in at least three cases, fresh ATL cells exhibited adhesion to human <u>umbilical vein endothelial cells</u> that could be considerably inhibited by either anti-OX40 MoAb or anti-<u>gp34</u> MoAb [4].
- <u>T cell</u> proliferation by direct cross-talk between OX40 ligand on human <u>mast</u> cells and OX40 on human <u>T cells</u>: comparison of <u>gene expression</u> profiles between human tonsillar and lung-cultured <u>mast cells</u> [10].

LLMs can be useful if used with caution

What is known about the functionality of human TNFSF4?

Human **TNFSF4**, also known as **OX40 ligand (OX40L)** or **CD252**, is a member of the tumor necrosis factor (TNF) superfamily. It is a costimulatory molecule that plays a critical role in the immune system by influencing T-cell activation, survival, and differentiation. Here are the key details about its functionality:

Structure and Expression

- TNFSF4 is expressed as a type II transmembrane protein on activated antigen-presenting cells (APCs), such as dendritic cells, B cells, and macrophages.
- It interacts with its receptor, OX40 (CD134), which is expressed on activated T cells, particularly CD4+ T cells.

1. T-cell Costimulation

- TNFSF4 acts as a costimulatory signal during T-cell activation, enhancing the proliferation, survival, and function of T cells.
- It amplifies the immune response by promoting cytokine production, such as IL-2, which is crucial for T-cell growth.

2. T-cell Memory Development

• TNFSF4-OX40 signaling supports the development and maintenance of memory T cells, ensuring a rapid and robust immune response upon re-exposure to the same antigen.

3. Effector T-cell Function

 This pathway enhances the function of effector T cells, including their ability to produce cytokines like IFN-γ and TNF-α, which are essential for combating infections and tumors.

4. Regulatory T-cell (Treg) Modulation

• TNFSF4 can influence Treg function, sometimes promoting their suppressive activity to prevent excessive immune responses.

5. Role in Immune Diseases

- Dysregulated TNFSF4 signaling is implicated in autoimmune diseases (e.g., systemic lupus erythematosus, rheumatoid arthritis) due to its role in sustaining chronic immune activation.
- It may also contribute to allergic diseases and inflammation.

6. Role in Cancer Immunity

 TNFSF4 expression on APCs can enhance anti-tumor immunity by supporting T-cell-mediated immune responses against tumors.

Functional analysis relates hits to existing knowledge

Germ-line stem cell division

The self-renewing division of a germline stem cell to produce a daughter stem cell and a daughter germ cell, which will divide to form the gametes.

Generproduct	Gene/product name
Hoxc4	homeobox C4
Ing2	inhibitor of growth family, member 2
Stra8	stimulated by retinoic acid gene 8
Zbtb16	zinc finger and BTB domain containing 16
Etv5	ets variant 5

Gene/product Gene/product name

Advantages:

- Biological insight
- Validation of experiment
- Generate new hypotheses

Limitations:

- You can only discover what is already known
 - Novel functionality will be missing
 - Existing annotations may be incorrect
 - Many species are poorly supported

Functionality is generally annotated on genes

- Things to think about
 - Converting hits to genes
 - Transcripts / Proteins are easy
 - Genomic positions may be possible
 - Gene nomenclature
 - Names change over time
 - Gene definitions appear / change

- Types of list
 - Categorical (hit or not a hit)
 - Ordered
 - Quantitative

Hits	Ordered	Quant
ABC1	1. DEF1	ABC1 = 5.3
DEF1	2. ABC1	DEF1 = 2.1
GHI1	3. JKL1	GHI1 = 7.9
JKL1	4. GHI1	JKL1 = 1.0
		MNO1 = 0.4
[All non hits]	[All non hits]	PQR1 = 5.7
		STU1 = 3.8

Comparing your hits to functional gene sets

Germ-line stem cell division

The self-renewing division of a germline stem cell to produce a daughter stem cell and a daughter germ cell, which will divide to form the gametes.

Gene/product Gene/product name

Hoxc4	homeobox C4
Ing2	inhibitor of growth family, member 2
Stra8	stimulated by retinoic acid gene 8
Zbtb16	zinc finger and BTB domain containing 16

A4galt Flywch1 Мурор Atl1 Gnpda2 Rnf6 Cdk19 Hoxc4 Serinc1 Cdon Ing2 Stra8 Cecr2 ligp1 Trp73 Map3k9 Zbtb16 Etv5

My Hits

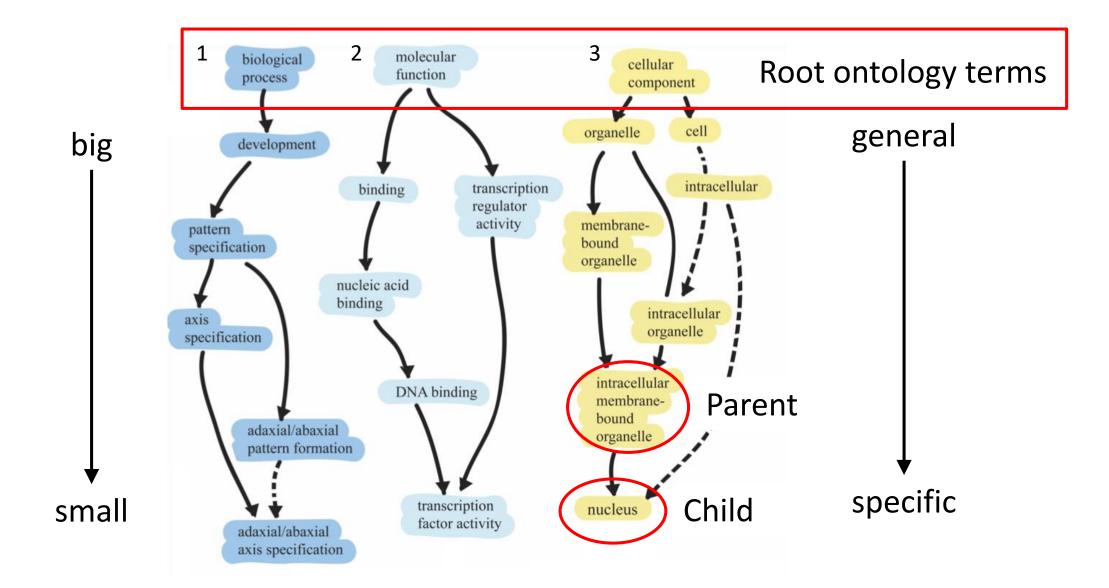
Nothing is ever straight forward...

Best hit: "DNA Methylation" p<2e-10

- name: DNA methylation
- datasource: reactome
- organism: Human
- idtype: hgnc symbol
- Genes:
- Methyltransferases: DNMT1 DNMT3A DNMT3B DNMT3L
- Methyltransferase targeting protein: UHRF1
- Histones!!! H2AFB1 H2AFJ H2AFV H2AFX H2AFZ H2BFS H3F3A H3F3B HIST1H2AB HIST1H2AC HIST1H2AD HIST1H2AE HIST1H2AJ HIST1H2BA HIST1H2BB HIST1H2BC HIST1H2BD HIST1H2BE HIST1H2BF HIST1H2BG HIST1H2BH HIST1H2BI HIST1H2BJ HIST1H2BK HIST1H2BL HIST1H2BM HIST1H2BN HIST1H2BO HIST1H3A HIST1H3B HIST1H3C HIST1H3D HIST1H3E HIST1H3F HIST1H3G HIST1H3H HIST1H3I HIST1H3J HIST1H4A HIST1H4B HIST1H4C HIST1H4D HIST1H4E HIST1H4F HIST1H4H HIST1H4I HIST1H4J HIST1H4K HIST1H4L HIST2H2AA3 HIST2H2AA4 HIST2H2AC HIST2H2BE HIST2H3A HIST2H3C HIST2H3D HIST2H4A HIST2H4B HIST3H2BB HIST4H4

Sources of functional gene lists

- Human curated
 - Gene Ontology
 - Biological Pathways
- Domains / Patterns
 - Protein functional domains
 - Transcription factor regulated
- Experimental
 - Co-expressed genes
 - Interactions
 - Hits from other studies



Gene Ontology is a human curated functional database

GO has three domains and a hierarchical structure

Genes are specifically placed into each domain

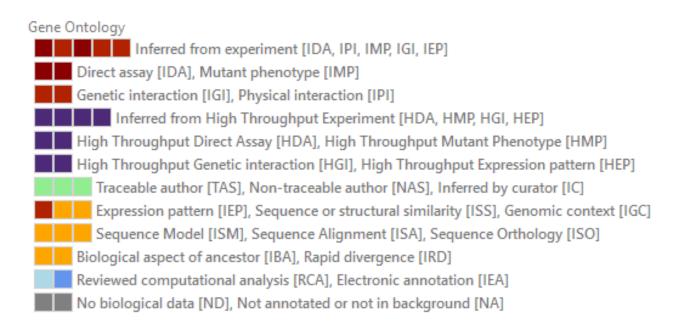
Nanog homeobox

Cellular Component

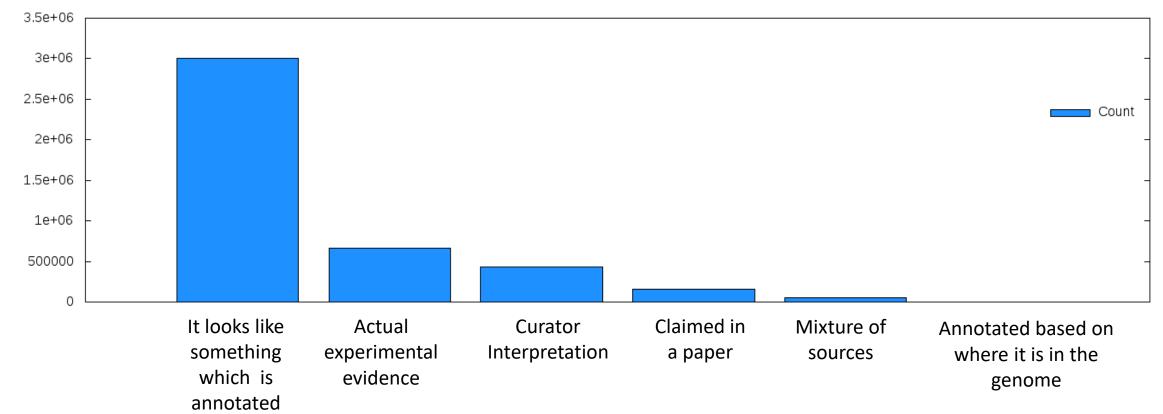
GO:0005634 nucleus GO:0005654 nucleoplasm GO:0005730 nucleolus

Molecular Function

GO:0003677 DNA binding
GO:0003700 transcription factor activity
GO:0003714 transcription corepressor activity
GO:0005515 protein binding
GO:0043565 sequence-specific DNA binding


Biological Process

GO:0001714	endodermal cell fate specification
GO:0006351	transcription, DNA-templated
GO:0006355	regulation of transcription, DNA-templated
GO:0007275	multicellular organism development
GO:0008283	cell proliferation
GO:0019827	stem cell population maintenance
GO:0030154	cell differentiation
GO:0035019	somatic stem cell population maintenance
GO:0045595	regulation of cell differentiation
GO:0045944	positive regulation of transcription from RNA pol2
GO:1903507 transcription	negative regulation of nucleic acid-templated

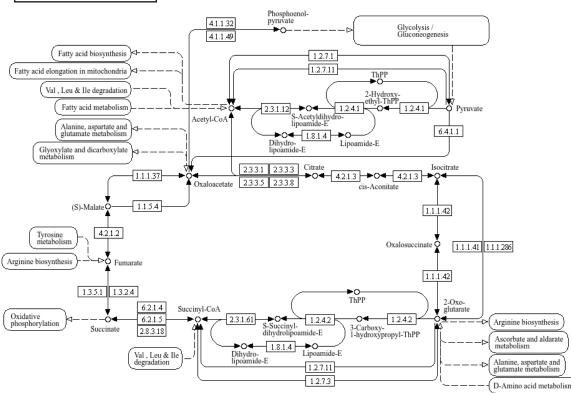

GO Annotations come with evidence

- Experimental
 - Experiment (EXP)
 - Direct Assay (IDA)
 - Physical Interaction (IPI)
 - Mutant Phenotype (IMP)
- Computational
 - Sequence Similarity (ISS)
 - Sequence Model (ISM)
 - Genomic Context (IGC)
 - Biological aspect of Ancestor (IBA)
 - Key Residues (IKR)

- Publications
- Curators

Annotations come with evidence

Evidence Overview


Count

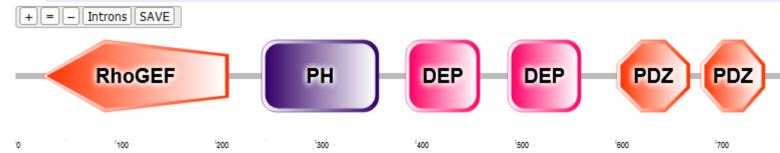
Pathway databases trace metabolic pathways and their regulation

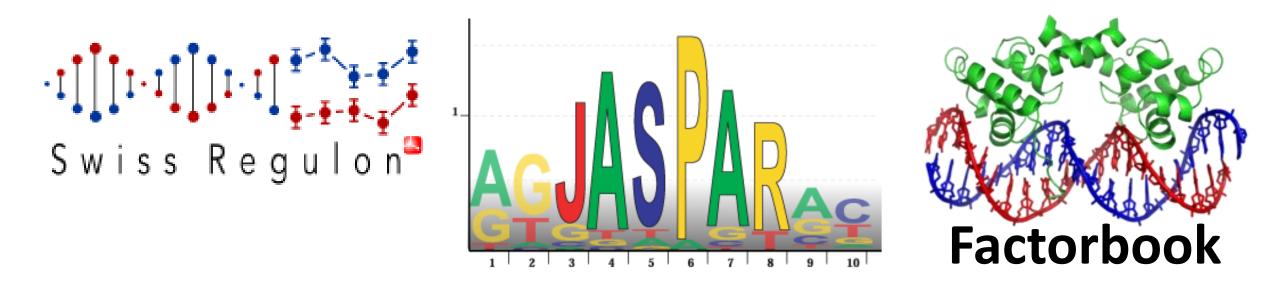
WIKIPATHWAYS Pathways for the People

00020 9/27/24 (c) Kanehisa Laboratories

reactome

Protein Domain databases annotate functional subdomains within proteins

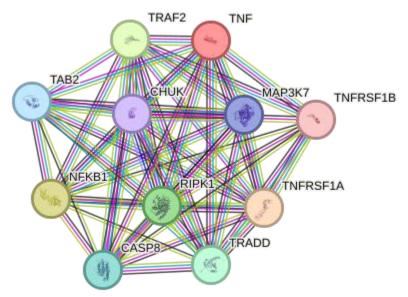


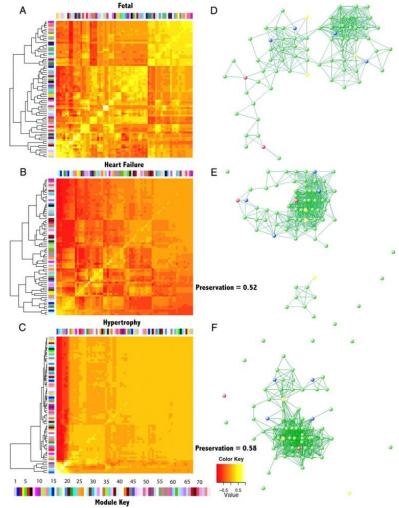

PH domain	
This is a SMAF	T PH domain (full annotation).
Position:	246 to 363
E-value:	9.70401799592535e-12 (<u>HMMER2</u>)
SMART ACC:	SM000233
Definition:	Pleckstrin homology domain.
Description:	Domain commonly found in eukaryotic signalling proteins. The domain family possesses multiple functions including the abilities to bind inositol phosphates, and various proteins. PH domains have been found to possess inserted domains (such as in PLC gamma, syntrophins) and to be inserted within other domains. Mutations in Brutons tyrosine kinase (Btk) within its PH domain cause X-linked agammaglobulinaemia (XLA) in patients. Point mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids.
Interpro abstract (IPR001849):	Pleckstrin homology (PH) domains are small modular domains that occur in a large variety of proteins. The domains can bind phosphatidylinositol within biological membranes and proteins such(full abstract)

Domains within Homo sapiens protein PREX2_HUMAN (Q70Z35)

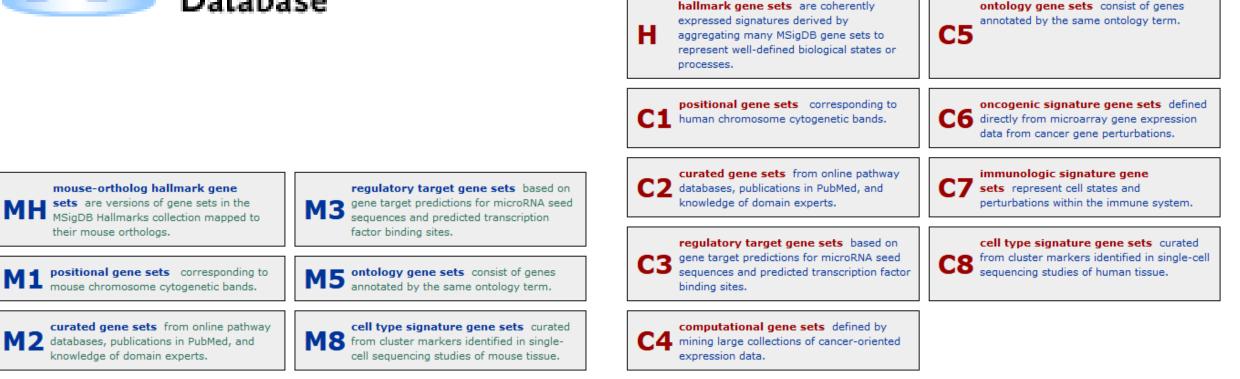
Phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 2 protein

Transcription Factor databases group genes by the motifs in their promoters


Interaction databases map out interactions between genes / proteins



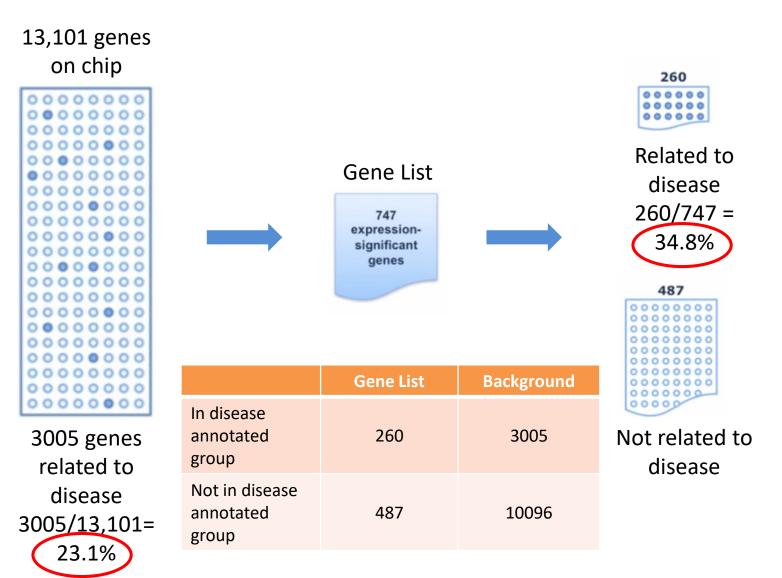
- Physical interaction
- Genetic interaction
- Gene fusions
- Literature mentions
- Genome neighbourhood



Co-expression databases group genes which are expressed together

https://www.gsea-msigdb.org/gsea/msigdb

Testing for enriched gene sets


There are two basic ways to test for enrichment

- Categorical
 - Start from a list of hit genes
 - Count overlaps between hit list and functional list
 - Find Functional lists where the degree of overlap is statistically unlikely

- Quantitative
 - Start with all genes
 - Associate a value with each gene
 - Look for functional sets with unusual distributions of values

Categorical Enrichment Analysis

Categorical tests for enrichment

Fisher's Exact test

	Gene List	Background	Total
In disease annotated group	260 E = 176.1	3005 E = 3088.8	3265
Not in disease annotated group	487 E = 570.9	10096 E = 10012.1	10583
Total	747	13101	13848

```
> counts <-(matrix(data = c(260, 487, 3005, 10096), nrow = 2))
> fisher.test(counts)
        Fisher's Exact Test for Count Data
data: counts
p-value = 9.769e-13
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
1.52846 2.10120
sample estimates:
odds ratio
1.793564
        (260/487) / (3005/10096)
```

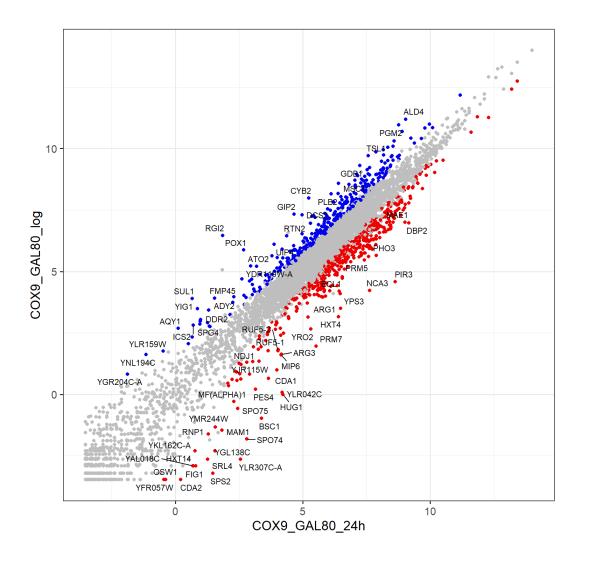
Categorical tests are influenced by where you set the cutoff for "interesting" genes

Hit1	Hit17
Hit2	Hit18
Hit3	Hit19
Hit4	Hit20
Hit5	Hit21
Hit6	Hit22
Hit7	Hit23
Hit8	Hit24
Hit9	Hit25
Hit10	Hit26
Hit11	Hit27
Hit12	Hit28
Hit13	Hit29
Hit14	Hit30
Hit15	Hit31
Hit16	Hit32

- Function X
 - 3 hits out of 32 in 'interesting' list
 - Not significant(p=0.07)

Categorical tests are influenced by where you set the cutoff for "interesting" genes

Hit1	Hit17
Hit2	Hit18
Hit3	Hit19
Hit4	Hit20
Hit5	Hit21
Hit6	Hit22
Hit7	Hit23
Hit8	Hit24
Hit9	Hit25
Hit10	Hit26
Hit11	Hit27
Hit12	Hit28
Hit13	Hit29
Hit14	Hit30
Hit15	Hit31
Hit16	Hit32

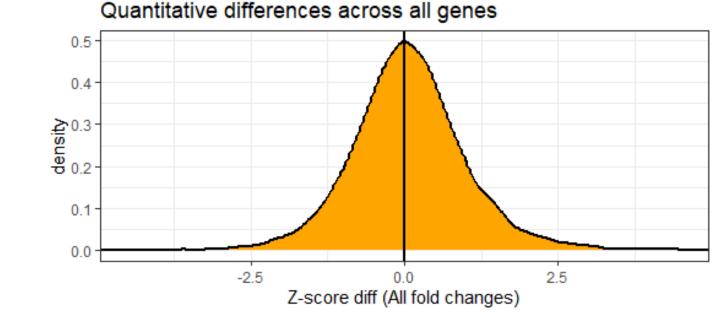

- Function X
 - 3 hits out of 7 in'interesting' list
 - Significant (p=0.02)

Ordered, but not quantitative lists allow sequential categorical analysis

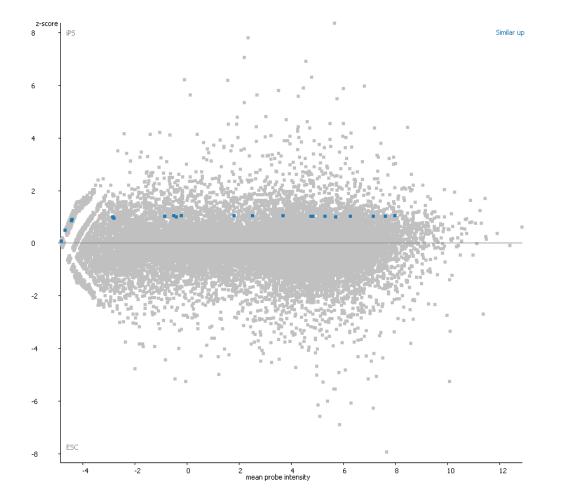
Hit1	Hit17
Hit2	Hit18
Hit3	Hit19
Hit4	Hit20
Hit5	Hit21
Hit6	Hit22
Hit7	Hit23
Hit8	Hit24
Hit9	Hit25
Hit10	Hit26
Hit11	Hit27
Hit12	Hit28
Hit13	Hit29
Hit14	Hit30
Hit15	Hit31

- Function X
 - Length=1 p=0.60
 - Length=2 p=0.80
 - Length=3 p=0.30
 - Length=4 p=0.35
 - Length=5 p=0.40
 - Length=6 p=0.45
 - Length=7 p=0.05
 - Length=8 p=0.08
 - Length=9 p=0.10

Directional Gene Lists

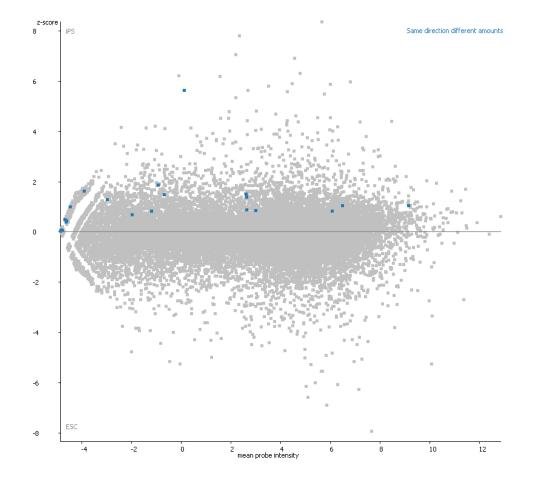

- One search or two?
 - One search
 - Higher power (more genes)
 - Lower enrichment
 - Mixed effects (pathways)
 - Two searches
 - Easier interpretation
 - Less power
 - Higher enrichment

Quantitative Enrichment Analysis



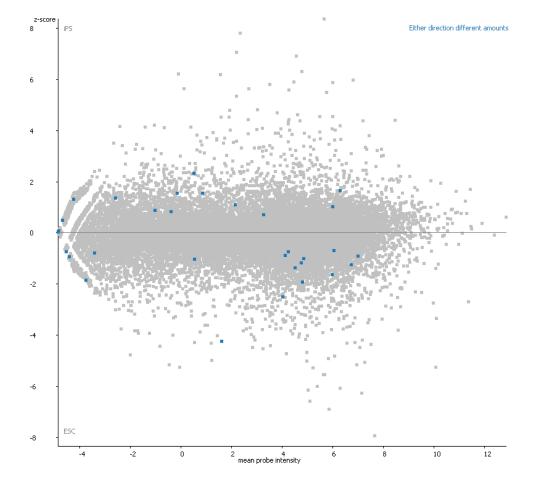
Quantitative comparisons can offer more power

- What quantitative value can we use?
 - Differential p-value (normally -10 log(p))
 - Fold change
 - -Absolute difference


What kind of changes do we expect in an interesting category?

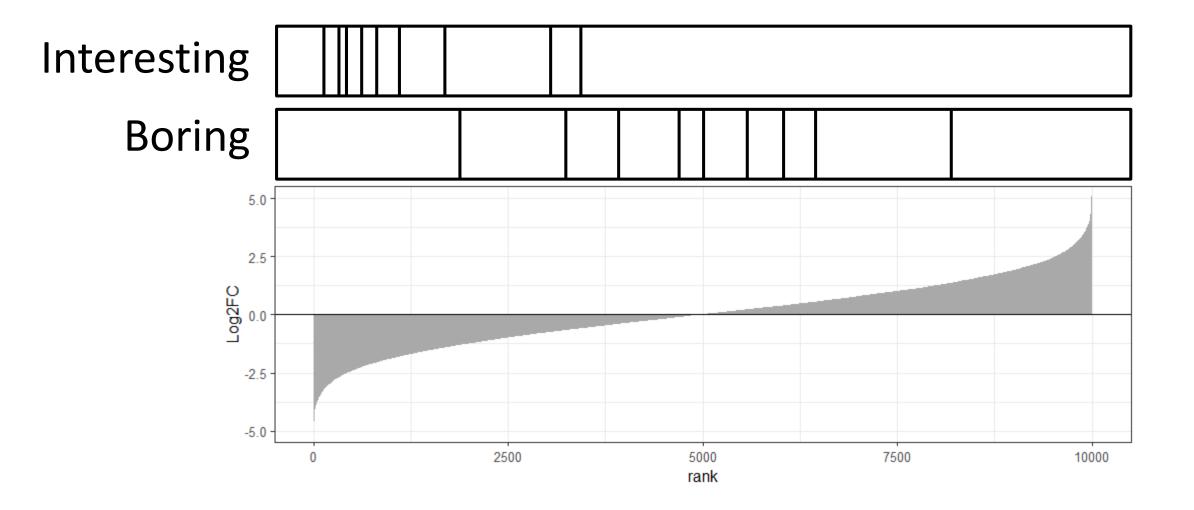
Student's T-test

Genes in that category all change, and by about the same amount?

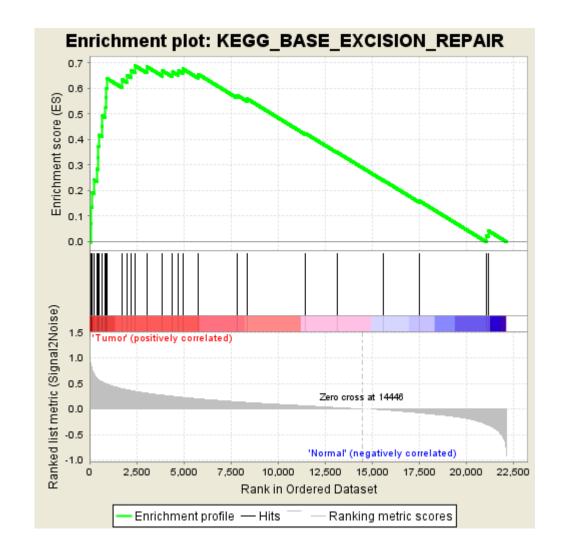

What kind of changes do we expect in an interesting category?

Kolmogorov Smirnov Test

Genes in that category all change in the same direction, but by different amounts?


What kind of changes do we expect in an interesting category?

Absolute KS Test


Genes in that category all change in either direction, but by different amounts?

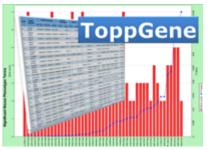
GSEA statistics

GSEA Statistics

- Keep a running total
- Start at the highest values
- If gene is in the set add value
- Otherwise subtract value
- Enrichment score is max score
- Stats compare ES with randomly shuffled data

Multiple Testing Correction

- Original p-value is for one test (one gene set)
- Thousands of sets tested in each analysis
- Many tools report raw as well as corrected p-values



What do we get back from an enrichment test?

- A p-value
 - Remember that this reflects not only difference but also variance and power (number of observations)
- A difference value
 - Enrichment difference (odds ratio)
 - Mean quantitative difference
 - Remember large differences are easier to obtain with small numbers of observations

Tools for functional gene list analysis

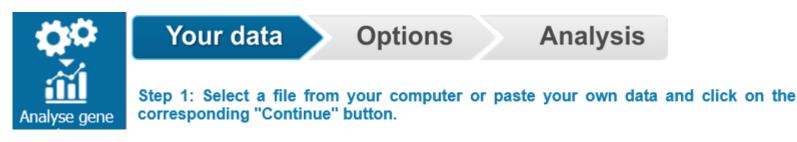
- There are many different tools available, both free and • commercial
- Popular tools include:

Gene Ontology enRIchment anaLysis and visuaLizAtion tool

WebGestalt

g:GOSt Functional profi	g:Cor Gene ID c		n		Orth gy search	sr	g: SNPense NP id to gene name		
g:Profiler	Contact	Documentation	API	FAQ	Cite g:Profiler	Archives	Beta version		

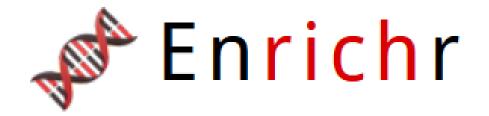
- Categorical or ordered statistics
- Lots of additional options
- Wide species support
- Interesting presentation
 - Doesn't scale well to lots of hits


Query Upload query Upload bed file	Options
put is whitespace-separated list of genes 🕢	Organism: 🕄
	Homo sapiens (Human)
	✓ Highlight driver terms in GO
	Ordered query 3
	Run as multiquery I and a second s
	Advanced options 💙
	Data sources ❤
	Data sources ❤ Bring your data (Custom GMT) ❤

1.	Enter ids and or select file for batch upload. Else enter ids or select file or list from workspace for comparing to a reference list.	
Enter IDs: <u>Supported</u> IDs	separate IDs by a space or comma	
Upload IDs: <u>File</u> <u>format</u>	Browse No file selected.	
	Please login to be able to select lists from your workspace.	
Select List Type:	 ID List Previously exported text search results Workspace list PANTHER Generic Mapping ID's from Reference Proteome Genome 	
	Organism for id list Abrus precatorius (ABRPR)	v)
	🔾 VCF File 🛛 Flanking region 🛛 20 Kb 💌 🗌 Search Enhancer Data	

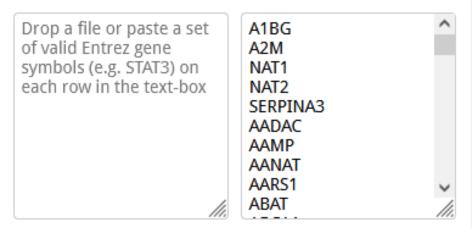
- Categorical or Quantitative statistics
- Part of Gene Ontology Consortium
 - Annotations are up to date
- Simple enrichment analysis
- Functional lists and categorical break down

- Categorical or quantitative statistics
- Pathway focussed
- Simple submission interface (no custom background)
- Really nice visualisations


GOliath

- Categorical statistics
- Limited species support
- Allows custom backgrounds
- Uses PathwayCommons gene sets
- Innovative detection and presentation of artefacts

Select species	human ~
Min Category Size	50
Max Category Size	500
Gene List	Background List (optional)
Paste Gene Names here	Paste Gene Names here



- Categorical Statistics
- Most popular system (mostly historic)
- Has been behind the latest annotation
 Was updated again, but now behind once more
- Lots of support for different IDs and Species
- Configurable gene sets
- Simple output presentation

- Categorical Statistics
- Biggest selection of gene sets
- Simple interface, but limited options
 - No species information
- Simple interactive visualisation
- Novel scoring scheme to rank hits

Drop a file or paste a set of Entrez gene symbols on each row in the textbox below. You can try a gene set example. Also, you can now try adding a background (clear).

0 gene(s) entered

Gene Ontology enRIchment anaLysis and visuaLizAtion tool

- Categorical or ranked analysis
- Mostly GO gene list support
- Interesting visualisation options

Step 1: Choose organism

Homo sapiens

Step 2: Choose running mode

○ Single ranked list of genes (target and background lists)

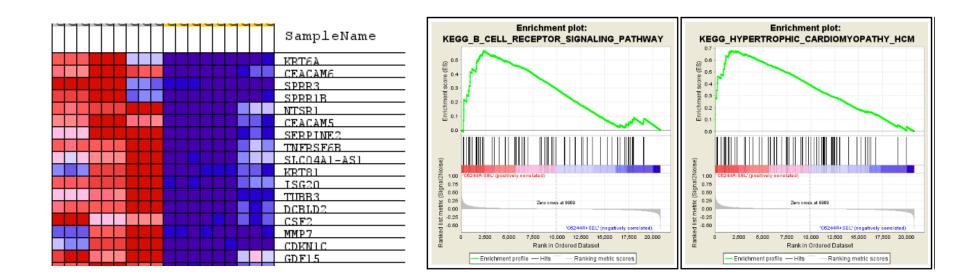
Step 3: Paste a ranked list of gene/protein names

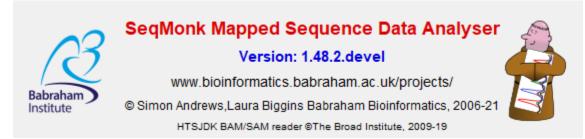
×

Names should be separated by an <ENTER>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq, Uniprot, Unigene and Ensembl.

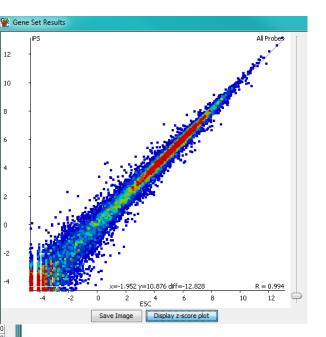
Target set:

Or upload a file: Browse... No file selected.


Background set:


Or upload a file: Browse... No file selected.

GSEA


- Quantitative enrichment
- Designed for expression datasets
- Local application
- Imports tab delimited expression data

- Quantitative enrichment of sequencing datasets
- Local Java application

-score		s	Term	No of p	mean z	identifier	descript	p-val
	iPS cell migration involved in gastrulation		cell migration involved in g	13	-2.288	CELL MIG	CELL MIG	
	Cell higrador involved in gascialador		primitive streak formation	10	-1.3	PRIMITIV	PRIMITIV	
			2'-5'-oligoadenylate synth	10	-1.258	2'-5'-OLI	2'-5'-OLI	
			cytoplasmic dynein complex	26	-1.241	CYTOPLA	CYTOPLA	
	i transmissione de la companya de la		host cell part	15	-1.218	HOST CE	HOST CE	
	医白细胞 化乙酰氨酸乙酯 化乙酸乙酯		semaphorin-plexin signalin	27	-1.17	SEMAPH	SEMAPH	
	1 WA 1953 1	F	cellular response to interfe	36	-1.162	CELLULA	CELLULA	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		response to interferon-beta	43	-1.135	RESPON	RESPONS	
			fascia adherens	12	-1.09	FASCIA	FASCIA	
			generation of neurons	14	-1.086	GENERA	GENERAT	
			low-density lipoprotein rec	10	-1.086	LOW-DE	LOW-DE	
			collagen-activated tyrosin	10	-1.082	COLLAGE	COLLAGE	
			smooth muscle cell migration	10	-1.038	SMOOTH	SMOOTH	
			antigen processing and pr	11	-1.032	ANTIGEN	ANTIGEN	
			inactivation of mapk activity	14	-1.032	INACTIV	INACTIV	
			positive regulation of macr	11	-1.025	POSITIV	POSITIVE	
		F	signal transduction involve	23	-1.022	SIGNAL T	SIGNAL T	
			profilin binding	10	-1.02	PROFILI	PROFILI	
			response to interferon-alpha	19	-1.008	RESPON	RESPONS	
			fibrillar collagen trimer	12	-1.007	FIBRILLA	FIBRILLA	
			negative regulation of acti	11	-1	NEGATIV	NEGATIV	
			limb bud formation	10		LIMB BU	LIMB BUD	
			regulation of glial cell migr	11		REGULAT		
			semaphorin receptor activity	11	-0.981	SEMAPH	SEMAPH	
	ESC		left/right axis specification	11	-0.981	LEFT/RIG	LEFT/RIG	
	x=-5.474 y=7.148		collagen-activated signalin	13	-0.969	COLLAGE	COLLAGE	
	-4 -2 0 2 4 6 8 10 12		cellular response to choles	10		CELLULA		
	mean probe intensity		epithelial cell differentiatio	16	-0.959	FPTTHEI T	EPITHEI T	

Gene List Practical

https://tinyurl.com/exercisetostartat

Exploring and Presenting Results

Simon Andrews, Laura Biggins

simon.andrews@babraham.ac.uk

laura.biggins@babraham.ac.uk **Babraham** Bioinformatics

Functional enrichment results

- Gene set information
 - Gene set name
 - Gene set source
 - Gene set description
- Statistical information
 - Raw p-value
 - Corrected p-value
 - Enrichment value

- Count information
 - Hit genes in category
 - Hit genes outside category
 - Background genes in category
 - Background genes outside category

Functional enrichment results

- Gene set information
 - Gene set name
 - Gene set source
 - Gene set description
- Statistical information
 - Raw p-value
 - Corrected p-value
 - Enrichment value

- Count information
 - Hit genes in category
 - Hit genes outside category
 - Background genes in category
 - Background genes outside category

Tables are often enough

Category			% of differentially expressed genes in GO category	Genes in GO category on array	% genes on array in GO category
Over-expressed in AJC: Biological process					
GO:9058: biosynthesis	0.009	52	24.41	1264	17.82
GO:7610: behavior	0.019	10	4.695	156	2.2
Over-expressed in AJC: Molecular function					
GO:5198: structural molecule activity	< 0.001	43	17.92	750	9.043
Over-expressed in SL: Biological process					
GO:8152: metabolism	0.019	192	71.91	4674	65.91
Over-expressed in SL: Molecular function					
GO:16209: antioxidant activity	0.013	6	1.917	52	0.627
GO:8135: translation factor activity, nucleic acid binding	0.010	13	4.153	166	2.001
GO:45182: translation regulator activity	0.014	13	4.153	173	2.086
GO:5489: electron transporter activity	0.005	17	5.431	225	2.713
GO:8233: peptidase activity	0.043	28	8.946	529	6.378
GO:3824: catalytic activity	0.001	166	53.04	3645	43.95

These are the significant GO Slim categories representing both biological process and molecular function ontologies for population specific significantly over-
expressed ($P \le 0.05$; no multiple test correction) features. For each significant GO category, we include the P value number of over-expressed genes in that GO,
percentage of representation in the over-expressed list, number of features of that GO in the microarray, and percentage of representation on the entire
microarray.

	Gene Ontology Term	% ¹	Univariate p-value ²	FDR-adjusted p-value ³
	Immunoglobulin	34.5	4.6E-25	1.8E-23
D/D	Immunoglobulin V-set	37.9	2.6E-18	2.5E-17
B/P Cluster	Antigen binding	27.6	8.7E-16	1.2E-14
	Immunoglobulin-like fold	44.8	9.7E-16	4.8E-15
	Immune response	41.4	2.0E-13	2.6E-11
		04.4	4 75 00	0.55.05
	Positive regulation of immune system process	24.4	1.7E-08	2.5E-05
TAIZ	Natural killer cell mediated cytotoxicity	19.5	9.7E-07	5.9E-05
T/NK Cluster	Positive regulation of lymphocyte activation	17.1	3.3E-07	6.9E-05
oluotol	T-cell	12.2	1.3E-06	7.2E-05
	Positive regulation of lymphocyte differentiation	12.2	3.7E-06	3.3E-04
	MHC class II, alpha/beta chain, N-terminal	39.1	7.0E-22	3.4E-20
M/D	Class II histocompatibility antigen	39.1	1.3E-19	1.9E-18
Cluster	MHC class II protein complex	39.1	4.6E-20	3.3E-18
0.00101	Immunoglobulin C1-set	43.5	7.0E-18	1.7E-16
	Antigen processing and presentation	47.8	1.3E-18	3.0E-16

¹ percentage of cluster genes (relative to all genes on array) annotated for a given ontology term; ² modified Fisher's Exact Test; ³ Benjamini and Hochberg false discovery rate-adjusted *p* value

Graphical Representations

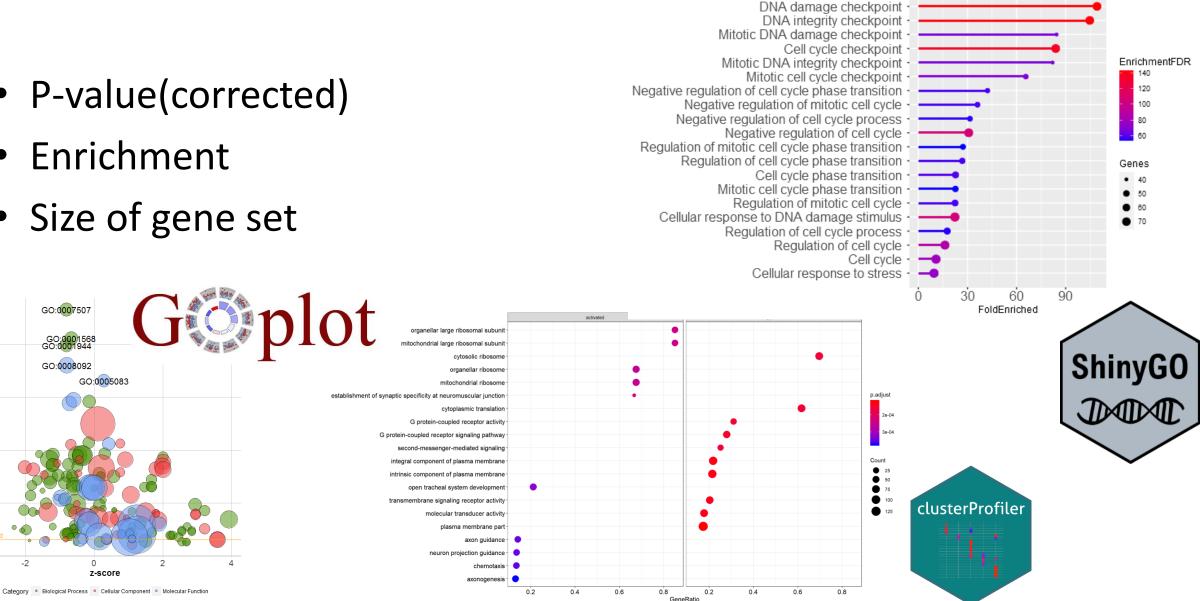
- Need to add something over a table
 - Relationships between multiple result values
 - Representation of redundancy between categories
 - Relationship to original data
 - Context of surrounding pathway

Plotting relationships between values

- P-value(corrected)
- Enrichment

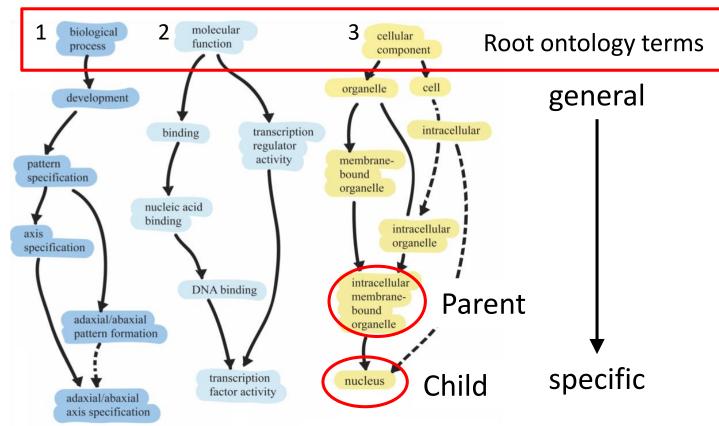
GO:0007507

GO:0008092


log (adj p-value)

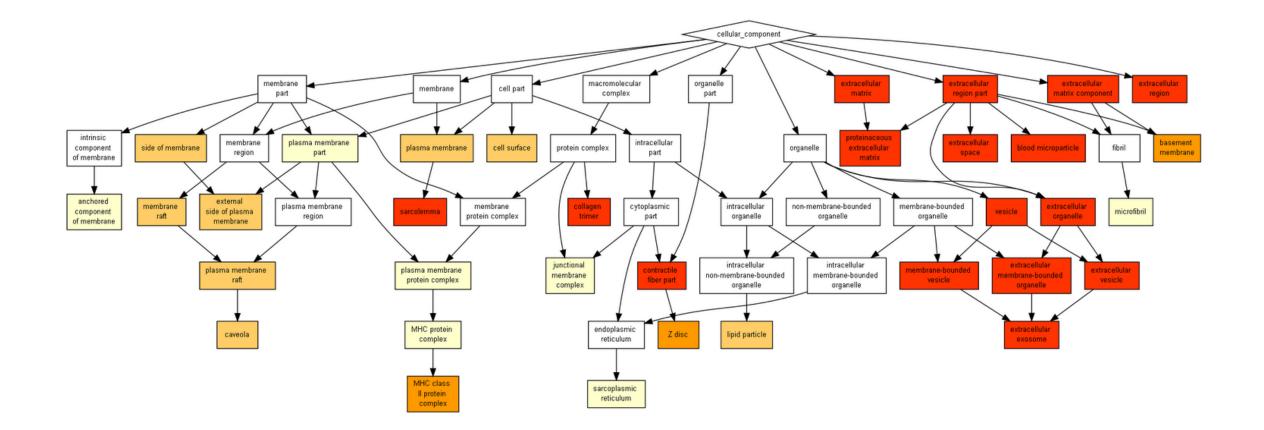
GO:0005083

0

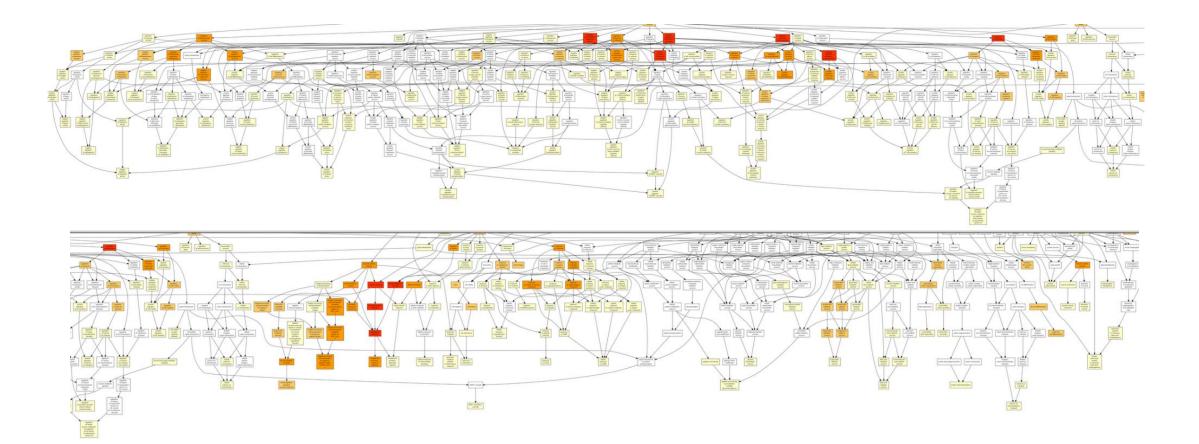

z-score

• Size of gene set

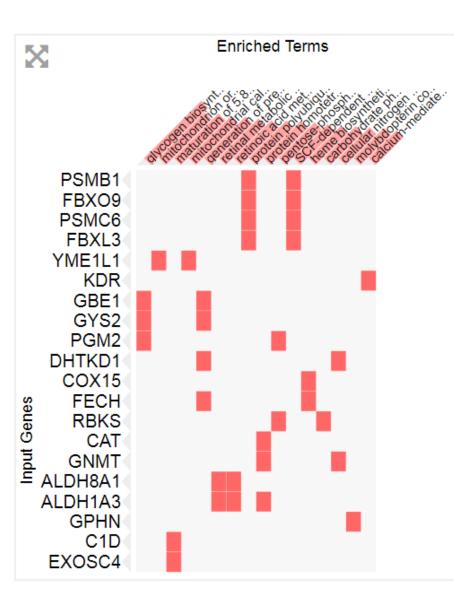
Redundancy in gene lists


Gene ontology is hierarchical - a gene is placed in the most specific category and will also appear in all the parent categories

Redundancy: DAVID clustering


40 CI	uster(s)			🖬 Download File								
	Annotation Cluster 1	Enrichment Score: 16.36	G		Count	P_Value Benjamini						
	SP_PIR_KEYWORDS	dna-binding	<u>RT</u>		53	3.5E-24 4.5E-22						
	GOTERM_BP_FAT	regulation of transcription	<u>RT</u>		60	2.0E-20 1.8E-17						
	GOTERM_MF_FAT	DNA binding	<u>RT</u>		54	6.0E-20 7.9E-18						
	GOTERM_MF_FAT	transcription regulator activity	<u>RT</u>		45	2.0E-19 1.3E-17						
	SP_PIR_KEYWORDS	transcription regulation	<u>RT</u>		49	5.9E-19 3.8E-17						
	GOTERM_MF_FAT	sequence-specific DNA binding	<u>RT</u>		30	1.5E-16 4.9E-15						
	SP_PIR_KEYWORDS	Transcription	<u>RT</u>		48	8.1E-16 3.3E-14						
	GOTERM_BP_FAT	transcription	<u>RT</u>		48	1.9E-15 8.1E-13						
	GOTERM_MF_FAT	transcription factor activity	<u>RT</u>		33	2.8E-15 9.1E-14						
	SP_PIR_KEYWORDS	nucleus	<u>RT</u>		69	1.1E-14 3.6E-13						
	GOTERM_BP_FAT	regulation of RNA metabolic process	RT		40	2.1E-12 6.1E-10						
	GOTERM_BP_FAT	regulation of transcription, DNA-dependent	<u>RT</u>		39	6.4E-12 1.4E-9						
	Annotation Cluster 2	Enrichment Score: 10.03	G		Count	P_Value Benjamini						
	GOTERM_MF_FAT	sequence-specific DNA binding	<u>RT</u>		30	1.5E-16 4.9E-15						
	GOTERM_MF_FAT	transcription factor activity	<u>RT</u>		33	2.8E-15 9.1E-14						
	INTERPRO	Homeodomain-related	<u>RT</u>	=	16	2.3E-10 4.3E-8						
	INTERPRO	Homeobox	<u>RT</u>	=	15	1.8E-9 1.7E-7						
	INTERPRO	Homeobox, conserved site	<u>RT</u>	=	14	3.4E-9 2.1E-7						
	SP_PIR_KEYWORDS	Homeobox	<u>RT</u>	=	15	8.5E-9 1.8E-7						
	UP_SEQ_FEATURE	DNA-binding region:Homeobox	<u>RT</u>	—	13	2.6E-8 3.7E-6						
	SMART	HOX	<u>RT</u>	=	15	4.7E-8 2.1E-6						
	Annotation Cluster 3	Enrichment Score: 5.86	G		Count	P_Value Benjamini						
	INTERPRO	<u>Transcription factor, fork head, conserved</u> <u>site</u>	<u>RT</u>	=	7	3.6E-7 1.7E-5						
	INTERPRO	Transcription factor, fork head	<u>RT</u>	=	7	3.6E-7 1.7E-5						
	UP_SEQ_FEATURE	DNA-binding region:Fork-head	<u>RT</u>	=	7	9.1E-7 6.5E-5						
	SMART	<u>FH</u>	<u>RT</u>	=	7	1.8E-6 4.0E-5						
	INTERPRO	Winged helix repressor DNA-binding	<u>RT</u>	—	9	2.5E-5 6.6E-4						

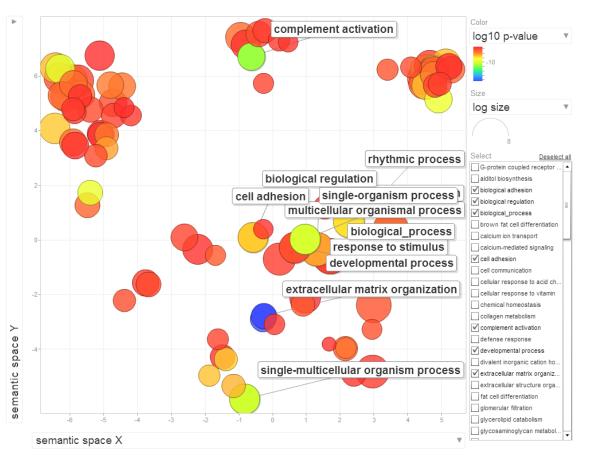
Redundancy: Gorilla GO images


cbl-gorilla.cs.technion.ac.il/

Redundancy: Gorilla GO images

cbl-gorilla.cs.technion.ac.il/

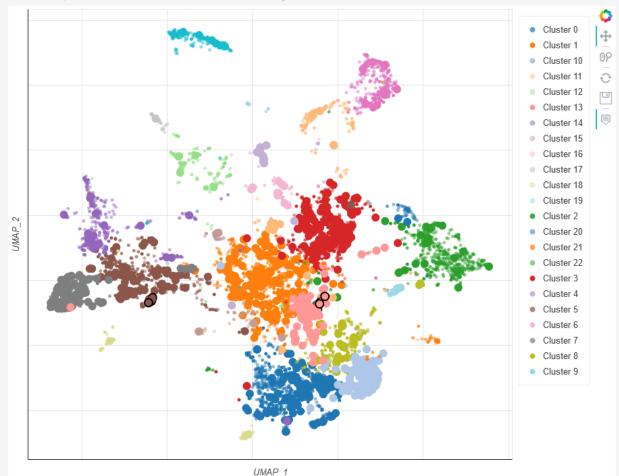
Redundancy: Overlap plots



📌 Enrichr

g:Profiler

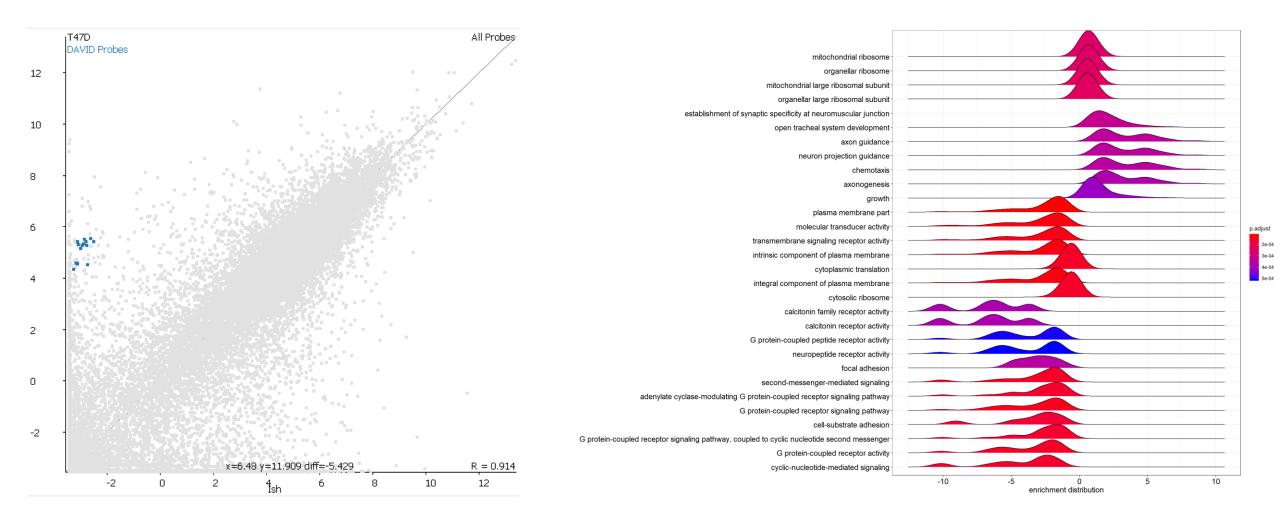
GO:	BP		stats		<u>>></u>	ENSGODDO	ENSG00000197496	ENSG00000164821	ENSG00000066263	ENSG00000160460	ENSG00000173262	ENSG00000186790	ENSG00000135655	ENSG00000124839	ENSG00000105887	ENSG0000168947	ENSG00000273802	ENSG00000117394	ENSGOOO
	Term name	Term ID	\$ Padj	-log ₁₀ (p _{adj})	, ≤,16	0113520	0197496	0164821	0166263	0160460	0173262	0186790	0135655	0124839	0105887	0102073	0273802	0117394	0117251
	mucosal immune response	GO:0002385	2.739×10 ⁻⁷							Т									
	organ or tissue specific immune response	GO:0002251	4.569×10 ⁻⁷																
	glucose transmembrane transport	GO:1904659	6.998×10 ⁻⁵																
	dehydroascorbic acid transport	GO:0070837	7.476×10 ⁻⁵																
	hexose transmembrane transport	GO:0008645	7.965×10 ⁻⁵																
	monosaccharide transmembrane transport	GO:0015749	9.034×10 ⁻⁵																
	carbohydrate transmembrane transport	GO:0034219	1.397×10 ⁻⁴																
	carbohydrate transport	GO:0008643	3.216×10 ⁻⁴																L
	innate immune response in mucosa	GO:0002227	2.884×10 ⁻³																
	glucose import across plasma membrane	GO:0098708	1.103×10 ⁻²																
	carbohydrate import across plasma membrane	GO:0098704	1.653×10 ⁻²																
	hexose import across plasma membrane	GO:0140271	1.653×10 ⁻²																
	vitamin transport	GO:0051180	1.809×10 ⁻²																L
	innate immune response	GO:0045087	1.856×10 ⁻²																
	actin filament depolymerization	GO:0030042	2.670×10 ⁻²																
	actin polymerization or depolymerization	GO:0008154	3.703×10 ⁻²																L
	defense response to symbiont	GO:0140546	4.681×10 ⁻²																
<																			


2D Redundancy

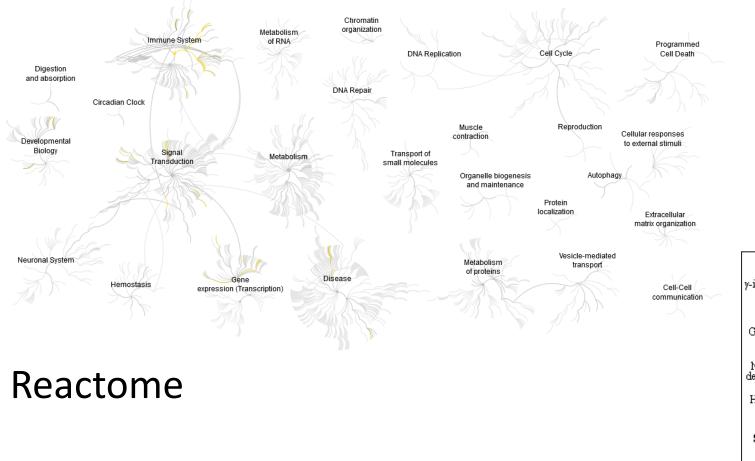
Revigo (from Gorilla) http://revigo.irb.hr/

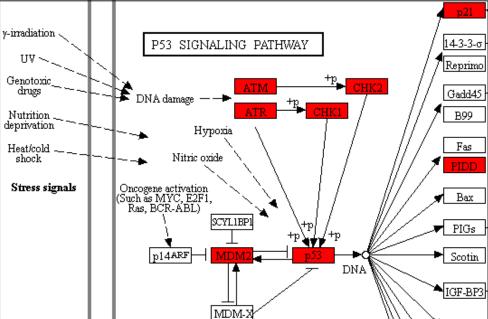
Enrichment Analysis Visualisation (from Enrichr)

https://appyters.maayanlab.cloud/Enrichment_Analysis_Visualizer/ Scatter plot visualization for GO_Biological_Process_2023.

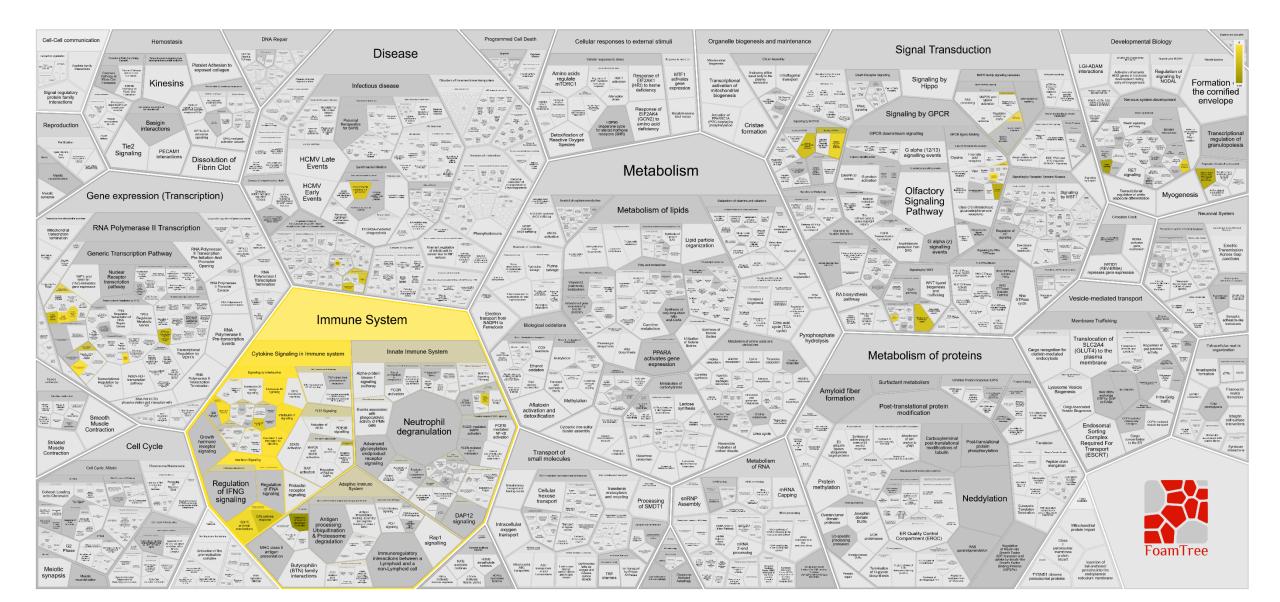


Relationship to original data


- Quantitative values for genes in category
 - Direction and magnitude of change


- Look at genes in category which aren't hits
 - Relative numbers
 - Supportive changes?

Relationship to original data


Pathways

ShinyGO

Pathways: Reactome

Summary

- Tables are often sufficient
 - Must include name, enrichment, corrected p-value
 - Other values are useful, but don't put in everything
- Figures can add extra information
 - Plotting multiple metrics
 - Illustrating redundancy
 - Relating to original data
 - Mapping to pathways

Artefacts and Biases in Gene Set Analysis

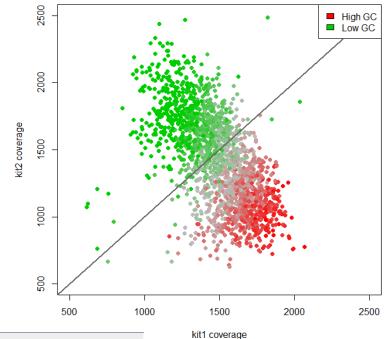
Simon Andrews, Laura Biggins, Christel Krueger

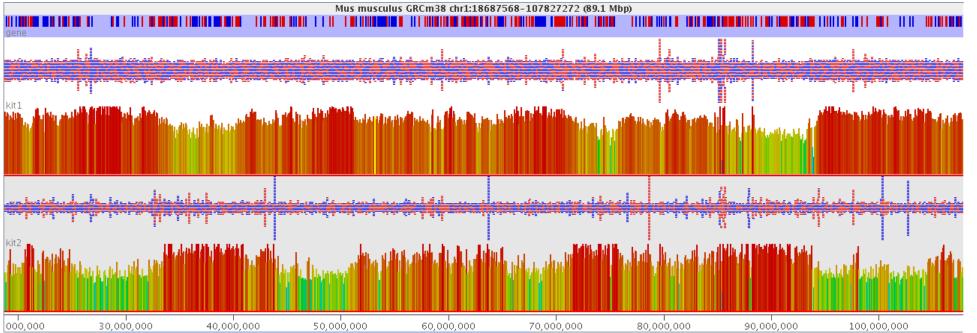
simon.andrews@babraham.ac.uk laura.biggins@babraham.ac.uk christel.krueger@altoslabs.com

What does gene set enrichment test?

 Is a functional gene set enriched for genes in my hit list compared to a background set

• Are some genes **more likely** to turn up in the hits for technical reasons?


• Are some genes **never likely** to turn up in the hit list for technical reasons?


Biases

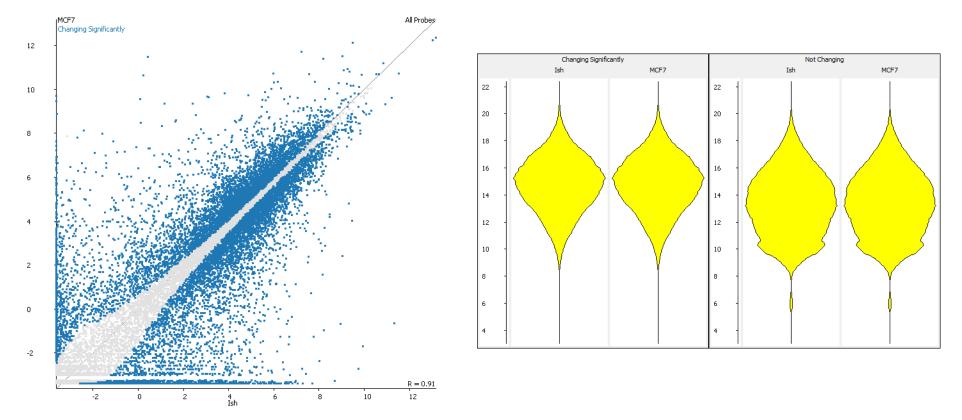
- All datasets contain biases
 - Technical
 - Biological
 - Statistical
- Biases can lead to incorrect conclusions
- We should be trying to spot these
 - Some are more obvious than others!

Technical Biases

• Simple GC bias from different polymerases in PCR

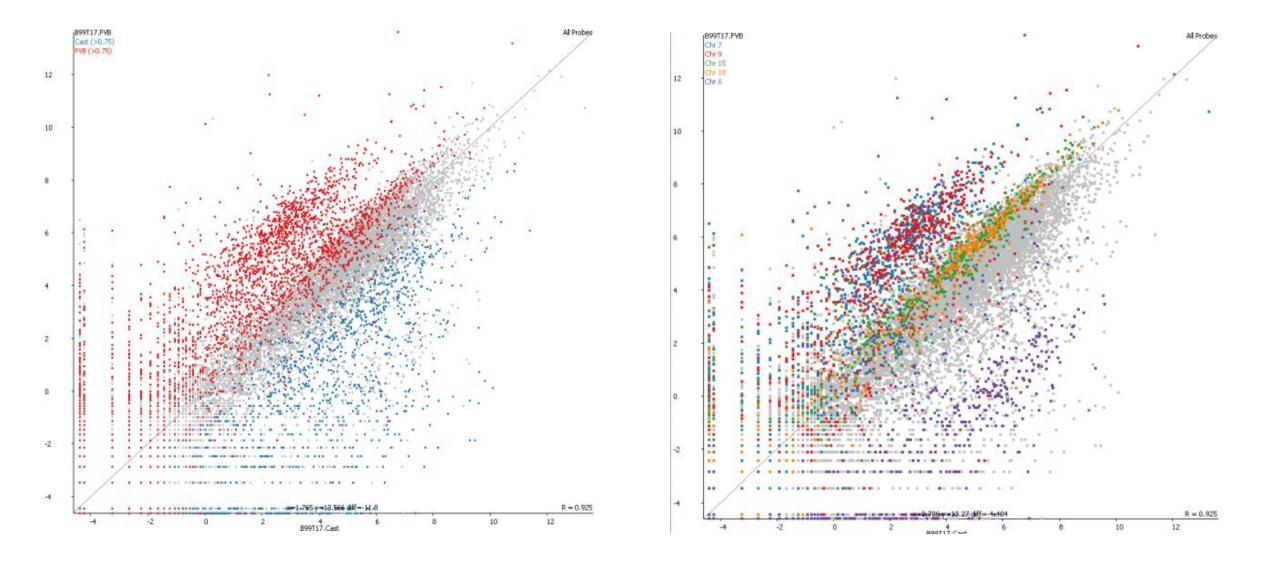
Statistical Biases

- The power to detect a significant effect is based on:
 - How big the change is
 - How well observed the data is (sample size)


• Lists of hits are often biased based on statistical power

RNA-Seq Statistical Biases

What determines whether a gene is identified as significantly differentially regulated?


- The amount of change (fold change)
- The variability
- How well observed was it
 - How much sequencing was done overall?
 - How highly expressed was the gene?
 - How long was the gene?
 - How mappable was the gene?

RNA-Seq Statistical Biases

- Unlikely to ever see hits from genes which are
 - Lowly expressed
 - Short

Biological Biases

Biases Look Like Real Biology

Bias	Function	P-Value
High GC	DNA-Templated Transcription	2.00E-20
Low GC	GPCR Signalling	4.00E-12
Long Genes	Synapse	2.30E-30
Chr 18	Homophilic Cell Adhesion	1.01E-26

Hindawi Publishing Corporation Bvidence-Based Complementary and Alternative Medicine Volume 2016, Article ID 7276161, 13 pages http://dx.doi.org/10.1155/2016/7276161

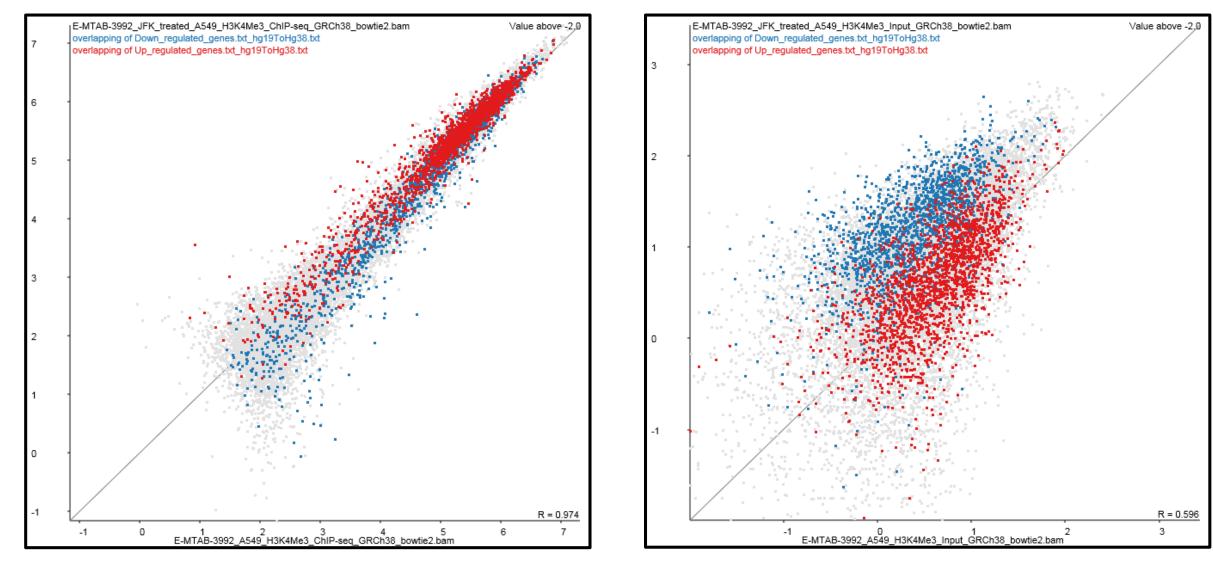
Research Article

Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

Jun Lu,¹ Xiaoli Zhang,¹ Tingting Shen,¹ Chao Ma,² Jun Wu,¹ Hualei Kong,¹ Jing Tian,³ Zhifeng Shao,¹ Xiaodong Zhao,^{1,2} and Ling Xu^{2,4}

¹Shanghai Center for Systems Biomedicine, School of Biomedical Engineering, State Key Laboratory on Oncogene and Bio-ID Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China ²Tumor Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai 200032, China ³College of Life Science, Northwest University, 229 Taibai Road, Xi'an 710069, China

Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity.


Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.

1. Introduction

Chromatin is the macromolecular complex of DNA and histone proteins that provides the scaffold for packaging the eukaryotic genome [1, 2]. Histones H2A, H2B, H3, and H4 are the basic components of nucleosomes, which form the fundamental unit of chromatin [3, 4]. Chemical modifications to the histones alter chromatin structure and regulate gene expression by altering noncovalent interactions within and between nucleosomes [2, 5]. H3K4Me3 is an active histone modification which is positively associated with gene expression [3, 6]. Previous studies have shown that the levels of H3K4Me3 modification are closely associated with the development, treatment, and diagnosis of disease [7–9]. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) has been developed to systematically characterize the contribution of epigenetic regulation in various biological processes via genome-wide profiling of various chemical modifications of histone proteins and genomic DNA methylation [10].

Lung cancer has become the leading cause of cancerrelated deaths worldwide [11]. Overall, only 16.8% of patients with lung cancer survive five years after their first definite diagnosis, mainly as a consequence of uncontrollable cell proliferation or tumor metastasis [12, 13]. Although various therapeutic interventions, including surgery, chemotherapy, and radiotherapy, have been developed to prolong the survival time of patients, drug side effects, pain, and emaciation

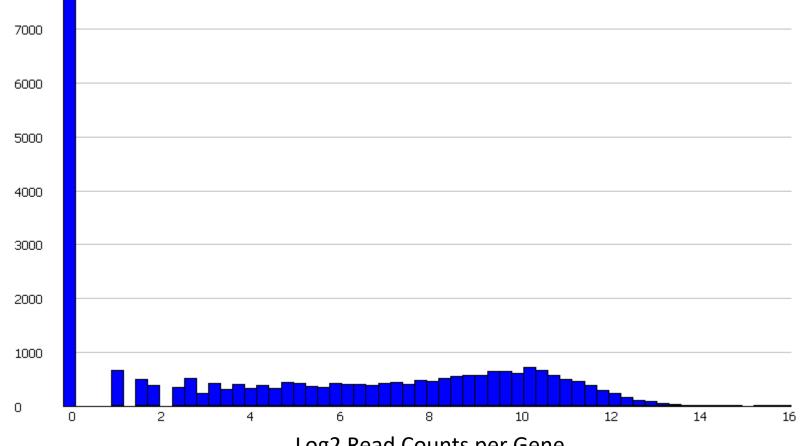
Bias or Biology?

ChIP

Input

What can you do?

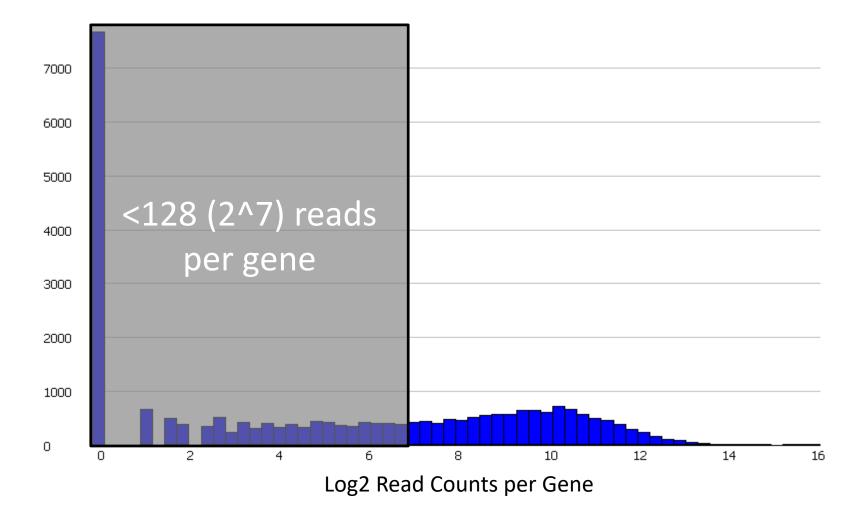
• Think about whether you're likely to have expected biases in your experiment.


- Look for unexpected biases.
 - Sometimes the bias *is* the interesting biology

• Use custom backgrounds during Gene Set Analysis to help minimise bias (if a tool supports it)

Using a background list can make a huge difference

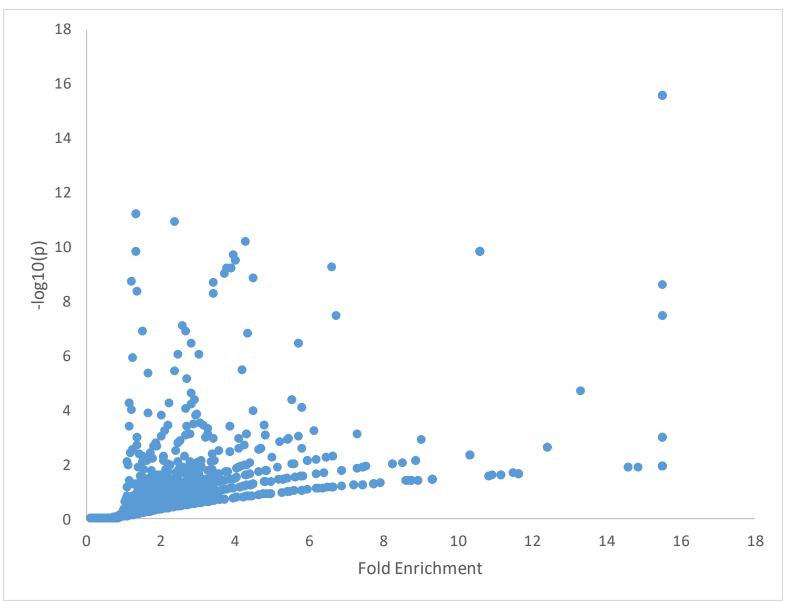
- What genes were you likely to see?
 - Some are technically impossible
 - Membrane proteins in LC-MS
 - Small-RNA in RNA-Seq
 - Some are much less likely
 - Unexpressed or low expressed in RNA-Seq
 - Unmappable in ChIP-Seq
 - Low CpG content in BS-Seq
- Make a list of what you *could* have seen, and set that as the background.


Expressed Genes

Log2 Read Counts per Gene

26,127 Genes Measured

Expressed Genes



10,378 Genes Realistically Measured (40%)

Statistical biases affect gene sets too

- Fisher's test is powered by
 - Magnitude of change
 - Observation level
- Big lists have more power to detect change
- Small lists are very difficult to detect
- Some tools allow you to exclude the largest gene set categories. We often use categories with between 50 500 genes in to get power and specificity
- Always look at the enrichment and the p-value when deciding what is interesting

Fold Change and p-value

Other biases: Random Genomic Positions

- Relating genomic positions to genes
- Find closest gene
 - Synapse, Cell Junction, postsynaptic membrane (p=8.9e-12)
 - Membrane (p=4.3e-13)
- Find overlapping genes
 - Plekstrin homology domain (p=1.8e-7)
 - Ion transport (p=7.1e-7)

Creating a background list with the same biases as your hit list will alleviate the artefacts.

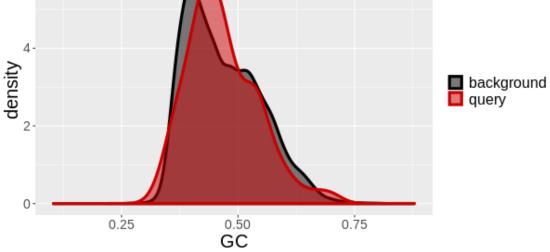
Stuff which turns up more than it should...

- Did a trawl through GEO RNA-Seq datasets
 - Downloaded pairs of samples which are supposed to be biological replicates
 - Found changing genes
 - Ran GO searches
- Many gene sets give hits. Some categories turn up very often
 - Ribosomal
 - Cytoskeleton
 - Extracellular
 - Secreted
 - Translation

www.bioinformatics.babraham.ac.uk/projects/goliath/

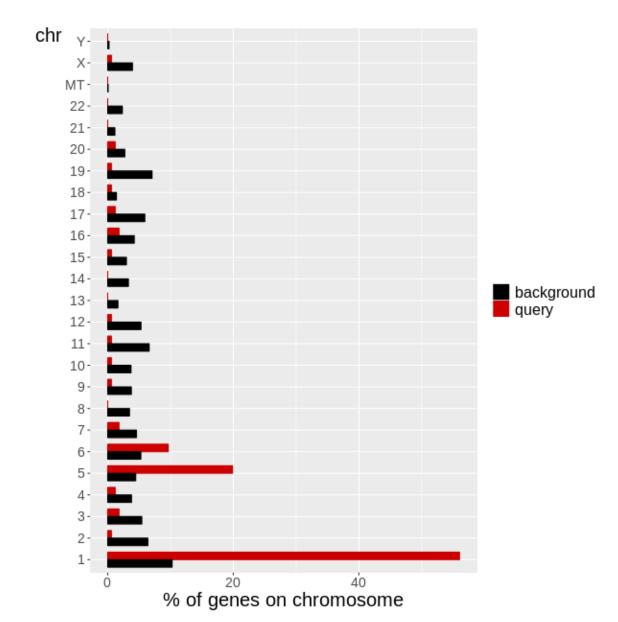
Welcome to GOliath

Select species	Homo_Sapiens/Dec_18 ~
Min Category Size	50
Max Category Size	500
Gene List	Background List (optional)
Paste Gene Names here	Paste Gene Names here
Query name (optional)	
Use example genes	
Analys	e my list

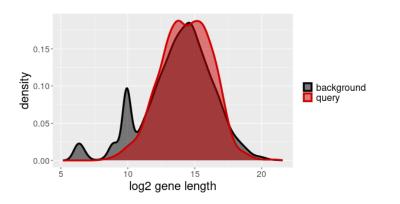

						Results for	or job Course test
Results Table			Prop	erties		Biase	
Copy CSV Excel Prir	ıt		Hit table				
Gene Set	Source	Query count	Background count	Category size	FDR	Enrichment	Potential bias
HALLMARK TNFA SIGNALING VIA NFKB	MSIGDB C2 HALLMARK TNFA SIGNALING VIA NFKB	17	200	200	1.384e-07	9.174	public_data
SIGNALING BY INTERLEUKINS	REACTOME R-HSA- 449147.11	20	461	461	4.195e-05	4.683	high_transcripts
POSITIVE REGULATION OF CYTOKINE PRODUCTION	GOBP GO:0001819	16	355	355	0.0005164	4.865	public_data
HALLMARK IL2 STAT5 SIGNALING	MSIGDB C2 HALLMARK IL2 STAT5 SIGNALING	12	200	200	0.0009546	6.476	public_data
HALLMARK APOPTOSIS	MSIGDB C2 HALLMARK APOPTOSIS	10	160	160	0.003579	6.746	
APOPTOSIS	WIKIPATHWAYS 20190910 WP254 HOMO SAPIENS	8	87	87	0.003579	9.925	
REGULATION OF CYTOKINE SECRETION	GOBP GO:0050707	10	154	154	0.003579	7.009	
REGULATION OF INTERLEUKIN-6 PRODUCTION	GOBP GO:0032675	8	101	101	0.007389	8.549	
HALLMARK INFLAMMATORY RESPONSE	MSIGDB C2 HALLMARK INFLAMMATORY RESPONSE	10	200	200	0.008619	5.397	public_data
HALLMARK ALLOGRAFT REJECTION	MSIGDB C2 HALLMARK ALLOGRAFT REJECTION	10	200	200	0.008619	5.397	public_data
Search gene set	Search source	min query	min bg	min size	min FDR	min enrichment	Search bias
		max query	max bg	max size	max FDR	max enrichment	

Checking for unexpected biases

- Do my hits look different from non-hits in factors which should be unrelated
 - Sequence composition
 - Genomic position
 - Gene Length
 - Number of splice variants
 - etc
- If a bias exists then is this the actual link between genes? If not then can I fix this by improving my background list?


Gene lengths

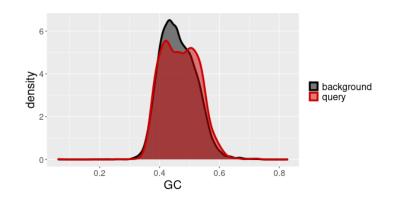
0.20-0.15density 0.10background query 0.05-0.00 15 10 20 5 GC content of genes 6-4

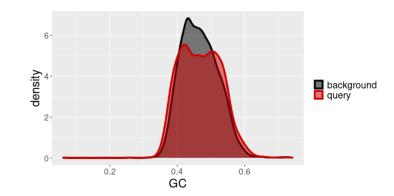

www.bioinformatics.babraham.ac.uk/goliath/

Chromosomal locations



Custom backgrounds can make a difference


Gene lengths


Gene lengths

GC content of genes

GC content of genes

Custom backgrounds can make a difference

Top hits without correction

PLURINETWORK

POSITIVE REGULATION OF VASCULATURE DEVELOPMENT POSITIVE REGULATION OF ANGIOGENESIS

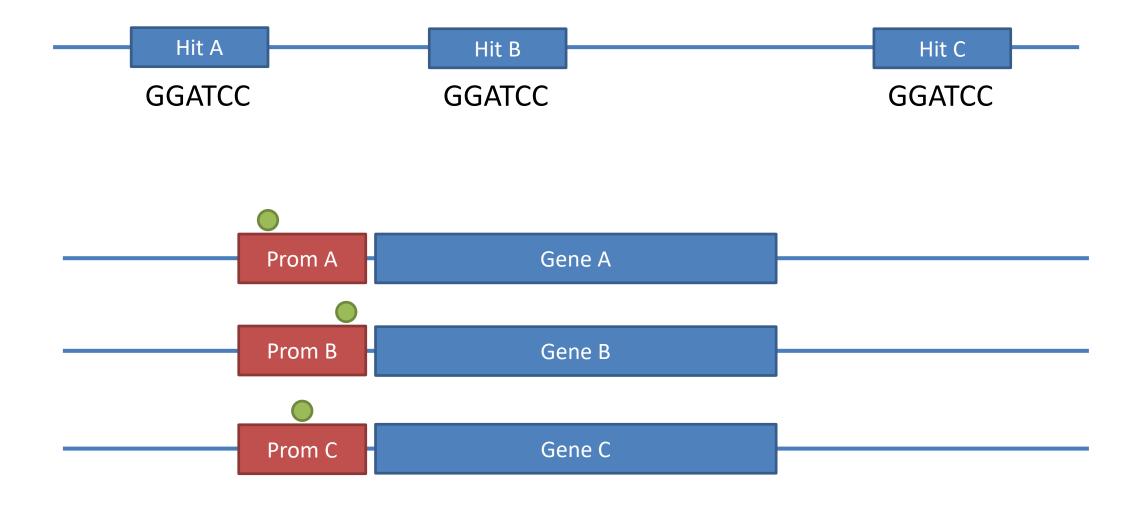
HALLMARK E2F TARGETS CHROMOSOME, CENTROMERIC REGION DNA REPAIR NEGATIVE REGULATION OF CELLULAR AMIDE METABOLISM POSITIVE REGULATION OF ENDOTHELIAL CELL MIGRATION NUCLEAR CHROMOSOME SEGREGATION

PID INTEGRIN1 PATHWAY

Top hits with correction

POSITIVE REGULATION OF VASCULATURE DEVELOPMENT POSITIVE REGULATION OF ANGIOGENESIS PID INTEGRIN1 PATHWAY BETA1 INTEGRIN CELL SURFACE INTERACTIONS INTEGRIN BINDING ASSEMBLY OF COLLAGEN FIBRILS NABA ECM REGULATORS POSITIVE REGULATION OF ENDOTHELIAL CELL MIGRATION RECEPTOR LIGAND ACTIVITY STRIATED MUSCLE TISSUE DEVELOPMENT

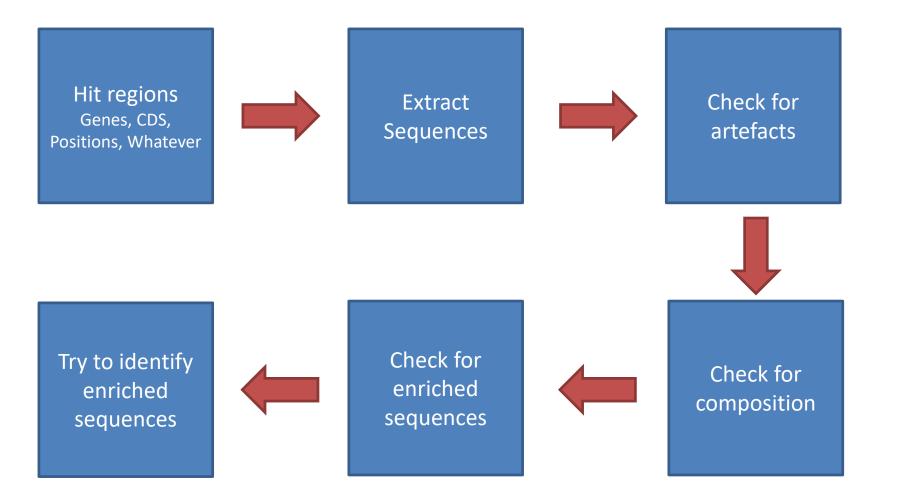
Avoiding Biases


- Create a custom background if applicable
 - Should contain all genes which *could* have been in your hit list
 - May be a compromise, but it's better than nothing
 - Will limit which tools you can run
- Filter your tested gene sets
 - Remove large over powered sets, or sets which are too small to achieve significance (~50 to ~500 is generally about right)
 - Check the hit gene sets for matches to known problematic sets

Motif Searching

Simon Andrews simon.andrews@babraham.ac.uk

Rationale


Basic Questions

• Does the sequence around my hits look unusual?

• Do specific sequences turn up more often than expected in my hits?

If so, do the sequences look like any known functional sequence?

Basic Workflow

Deciding what to extract

Extracting Sequence

- From positions
 - BEDTools
 - Genome Browsers*
 - Custom scripts

- From features
 - Genome Browsers*
 - BioMart

BioMart – Selecting Assembly

ensembl.org/biomart/martv	iew × +	-		×
← → ♂ ଢ	⑦ ⑦ www.ensembl.org/biomart/martview/6479f7133bee14309fd148: ··· ♡ ☆		I (ABP	≡
Clensembl BLA	ST/BLAT VEP Tools BioMart Downloads Help & Docs Blog	Lo	ogin/Regist	ter ^
New Count Results	URL VIL Perl O Help			
Dataset	Ensembl Genes 95 V			
[None selected]	- CHOOSE DATASET - - CHOOSE DATASET - Chicken genes (GRCg6a) Human genes (GRCh38.p12) Mouse genes (GRCm38.p6) Rat genes (GRCm38.p6) Rat genes (GRC211)			
In order to mai	American black bear genes (ASM334442v1) Angola colobus genes (Cang.pa_1.0) Anole lizard genes (AnoCar2.0) Armadillo genes (Dasnov3.0) Asian bonytongue genes (ASM162426v1) Ballan wrasse genes (BallGen_V1) Bicolor damselfish genes (Stegastes_partitus-1.0.2)			•

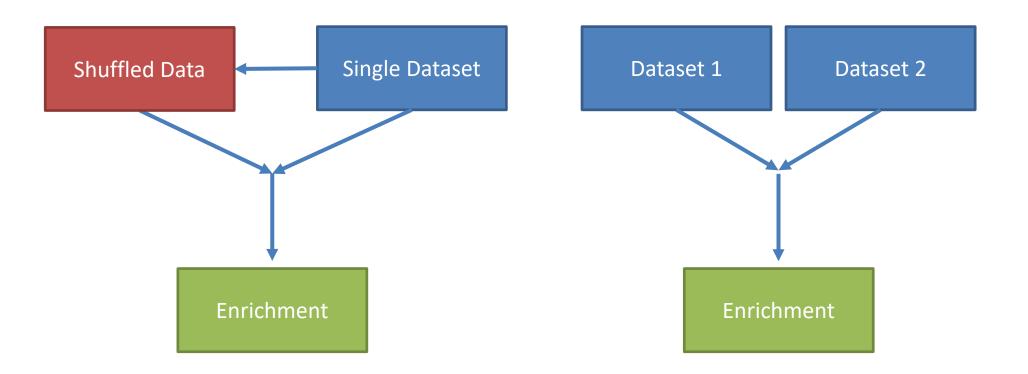
https://ensembl.org/biomart/martview

BioMart – Specifying features

el ensembl.org/biomart/martview × + ×					
← → ♂ û	www.ensembl.org/biomart/martview/6479f7133bee14309fd	148: ••• 🗢 🏠 🐘 🗊 🖾 🚥 🐵 🚍			
Provide Count Results	/BLAT VEP Tools BioMart Downloads Help & Docs I downloads Help & Docs I	Login/Register			
Dataset Mouse genes (GRCm38.p6)		hover over the list item to see the full text)			
Filters	REGION:				
Gene Name(s) [e.g. mt-Tp]: [ID-list specified]	□ GENE:				
Attributes	Limit to genes (external references)	With CCDS ID(s) © Only			
Gene stable ID Transcript stable ID	Duput external references ID list [Max 500 advised	O Excluded Gene Name(s) [e.g. mt-Tp] Gpr101 Fate1			
Dataset		Xlr3a			
[None Selected]		Cypt3 v			
		Browse No file selected.			
	<	>			
	Limit to genes (microarray probes/probesets)	With AFFY MG U74A probe ID(s)			
		Only Excluded			
	☐ Input microarray probes/probesets ID list [Max 500 advised]	AFFY MG U74A probe ID(s) [e.g. 96290_f_at]			

BioMart – selecting seq region

ensembl.org/biomart/martview	× +	- 0	×
\leftrightarrow > C $\hat{\mathbf{u}}$	www.ensembl.org/biomart/martview/6479f7133bee14309fd148	··· 🖂 🏠 💷 🧯	₽
	/BLAT VEP Tools BioMart Downloads Help & Docs Blog	Login/Reg	jister ^
New Count Results	🛉 URL 🖻 XML 🛃 Perl		
Dataset	Please select columns to be included in the o	output and hit 'Results' when ready	
Mouse genes (GRCm38.p6)	Missing non coding genes in your mart query ou	output, please check the following FAQ	
Gene Name(s) [e.g. mt-Tp]: [ID list specified]	 Features Variant (Germline) Structures Sequences 		
Attributes	○ Homologues		
Gene stable ID	SEQUENCES:		
Transcript stable ID	Sequences (max 1)		
Flank (Gene) Upstream flank []	▶ 		
Dataset	OUnspliced (Transcript)	5' UTR	
[None Selected]		3' UTR	
		Exon sequences	
		Coding aggregation	
) Coding sequence) Peptide	
	Upstream flank		
	Downstream flank		


BioMart – header info

ensembl.org/biomart/martview	× +		- 0	×
$\leftarrow \rightarrow$ C $\textcircled{0}$	Www.ensembl.org/biomart/martview/6479f7133bee14309fd14	85 ••• ♥ ✿	🛃 ···· 🏘	₽ Ξ
Dataset	Please select columns to be included in t	the output and hit 'Results' when read	ły	^
Mouse genes (GRCm38.p6) Filters	Missing non coding genes in your mart que	ry output, please check the following	<u>FAQ</u>	_
Gene Name(s) [e.g. mt-Tp]: [ID-list specified]	 Features Structures Sequences 			
Attributes	○ Homologues			
Flank (Gene)	BEQUENCES:			
Upstream flank [500] Gene name	HEADER INFORMATION:			
Dataset [None Selected]	Gene Information Gene stable ID Gene description Gene name	□Gene end (bp) □Gene type □Ensembl Protein Family ID(s)		
	☐ Source of gene name ☐ Chromosome/scaffold name ☐ Gene start (bp)	□ UniParc ID □ UniProtKB/Swiss-Prot ID □ UniProtKB/TrEMBL ID		
	Transcript Information CDS start (within cDNA) CDS end (within cDNA) 5' UTR start 5' UTR end 3' UTR start 3' UTR end Transcript stable ID	 □ Protein stable ID □ Transcript type □ Strand □ Transcript start (bp) □ Transcript end (bp) □ Transcription start site (TSS) □ Transcript length (including UTRs and the start start) 	nd CDS)	
	Exon Information CDS Length CDS start CDS end Exon stable ID	□ Start phase □ End phase □ cDNA coding start □ cDNA coding end		~

BioMart - exporting

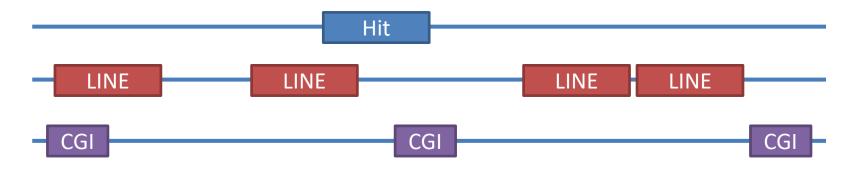
ensembl.org/biomart/martview	x + ×
← → ♂ @ @) 🛈 www.ensembl.org/biomart/martview/6479f7133bee14309fd1485 🗵 🏠 🛄 👜 👜 🚍
New Count Results	Login/Register ^ 7/BLAT VEP Tools BioMart Downloads Help & Docs Blog
Dataset	Export all results to File V FASTA V Unique results only Go
Mouse genes (GRCm38.p6) Filters	Email notification to
Gene Name(s) [e.g. mt-Tp]: [ID-list specified]	View 10 vrows as FASTA v Unique results only
Attributes	>Cnn1
Flank (Gene) Upstream flank [500] Gene name	TTCAAAGAAATAAAGCTTTGCTGAAGTTCTCCTTTGTGCCAGCTTTCATACTGGGCACCC TGGAGGTGACATTTCCTCCCTGCCCTTTACTGCACCCTTGTGAGGGCAAGCACAGTTGTTA GCCCCTCTAGAGATTTGGCAATAGGGTCCCATAGAGGGGGAAGGCTCTGTGTAGAGGGGTTG GTGAATGGAGGTCTGTCAGATCATCTTGCTATGCTA
Dataset	AGAATAAGGCATTCAGCCCCCTAGGTGGAAACAATGACACAGTCAGCTCCCAATACCAAG
[None Selected]	GCTCTGACATCAGGAGGTGGGGGGGGGGGGCCAGAGTATGTGTGGGGGTGCCACGCCTCTTGGCA GCCCCCGTGGCCAATGGGAC >Vrk3 GGCATGGCTCCGTGTCTCCGTACCTCAGGATGGCTGGCAACCCAAAGAACATATGCTTTC CAGGATCCCAAGAAAACCCAACTCCTCATGAGGAGGGGCTCCCTCAGAGTACAGGGGGAAA TTCCTCCGAGGAAGTTCCGGTTCCAGAAACTTCTCCTCAAATTTATCCCACCCA

Deciding on a comparison

Single Input Set

Double Input Set

Filtering list of hits



- High specificity
- Quick run times
- Potentially lower power
- Highest hit artefacts

- More power
- Long run times
- More noise

- Don't need all hits to generate motifs
- Often better to have a smaller, cleaner sequence set

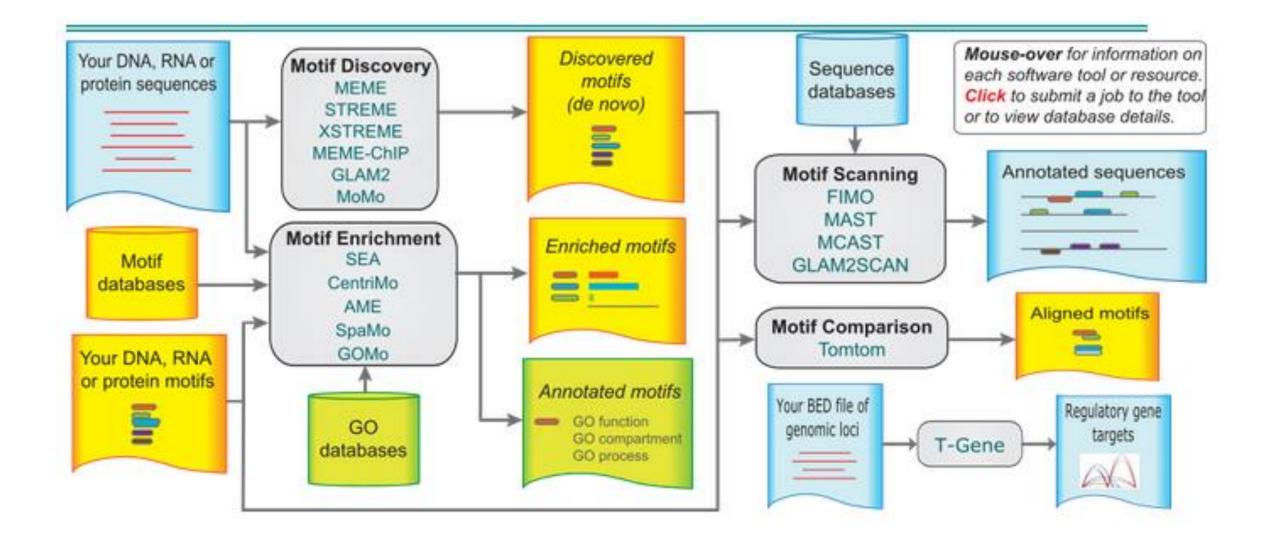
Artefacts

- Exclude common repeats
 - Simple repeats (poly-A, SerThr repeats etc)
 - Complex repeats (retroviral etc)
- Check composition
 - Analyse compositionally biased regions explicitly

Software

meme-suite.org

xxmotif.genzentrum.lmu.de/


lgsun.grc.nia.nih.gov/CisFinder/

cb.utdallas.edu/cread/

homer.salk.edu/homer/motif/

MEME Suite

MEME Motif Discovery

- MEME
 - Original motif enrichment program
 - PWM based motifs
 - Long ungapped motifs, sensitive search, slow!

• STREME/XSTREME

- Short ungapped discriminatory motifs
 - STREME when you expect the motif to be positioned within your sequence (ie ChIP peaks)
 - XSTREME when you don't expect the motif to be positioned (eg Promoters)
- Degeneracy based motifs
- Quick!
- GLAM2
 - Gapped motifs

MEME discovers novel, **ungapped** motifs (recurring, fixed-length patterns) in your sequences (sample output from sequences). MEME splits variable-length patterns into two or more separate motifs. See this Manual for more information.

Version 5.5.7

Data Submission Form

Perform motif discovery on DNA, RNA, protein or custom alphabet datasets.

Select the motif discovery mode ?

 \odot Classic mode \bigcirc Discriminative mode \bigcirc Differential Enrichment mode

Select the sequence alphabet

Use sequences with a standard alphabet or specify a custom alphabet. ?

O DNA, RNA or Protein O Custom Browse... No file selected.

Input the primary sequences

Enter sequences in which you want to find motifs. ? Upload sequences V Browse... No file selected.

Select the site distribution

How do you expect motif sites to be distributed in sequences? Zero or One Occurrence Per Sequence (zoops) v

Select the number of motifs

How many motifs should MEME find? ?

Input job details

(Optional) Enter your email address. ?

(Optional) Enter a job description. ?

Advanced options

Note: if the combined form inputs exceed 80MB the job will be rejected.

Main Parameters:

- Sequences (multi-fasta)
- Expected sites
- How many motifs to find

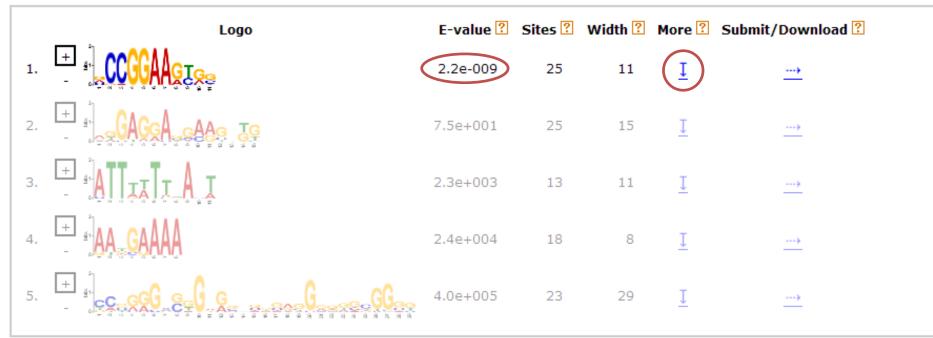
Advanced

- Custom background
- Negative set
- Motif size restriction

NB: Query size limited to 60kb

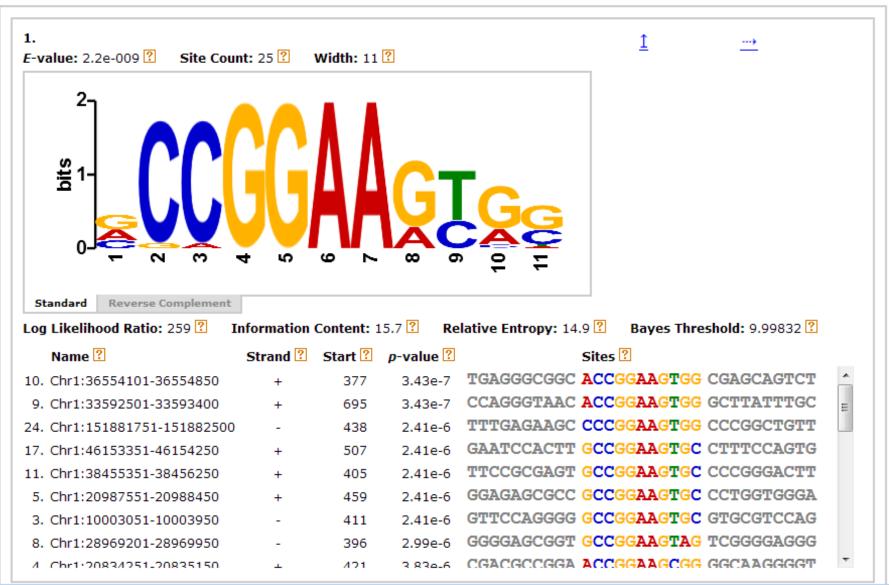
Local installations don't have this limit

Good Result Multiple Em for Motif Elicitation

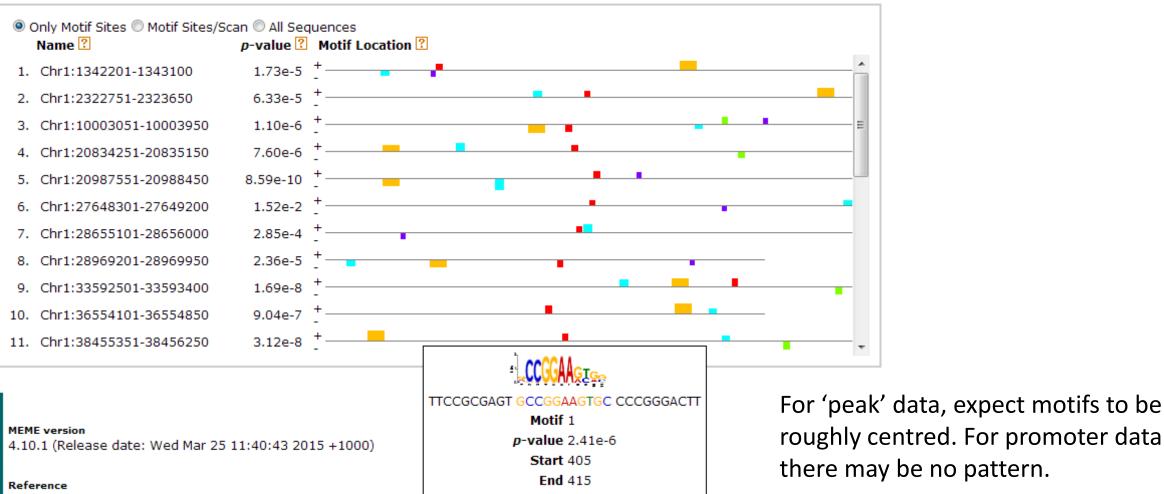

For further information on how to interpret these results or to get a copy of the MEME software please access <u>http://meme-suite.org</u>.

If you use MEME in your research, please cite the following paper:

Timothy L. Bailey and Charles Elkan, "Fitting a mixture model by expectation maximization to discover motifs in biopolymers", Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, AAAI Press, Menlo Park, California, 1994. [pdf]

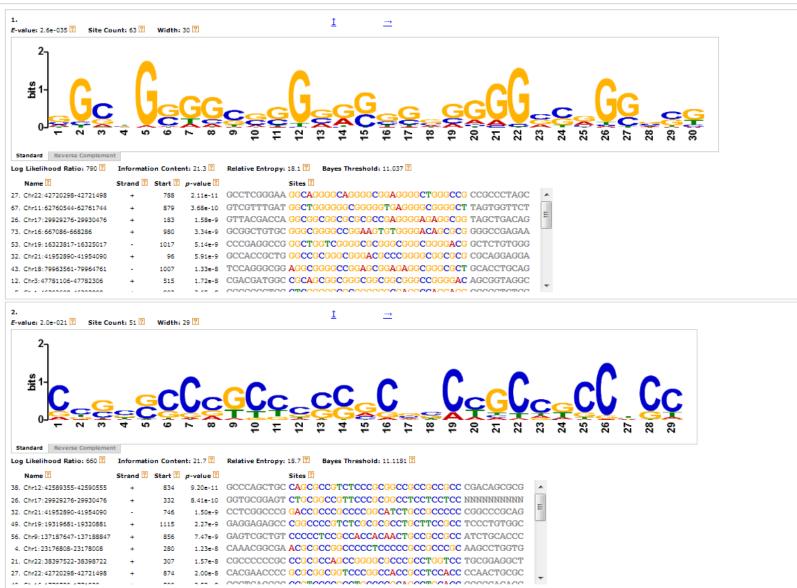

DISCOVERED MOTIFS | MOTIF LOCATIONS | PROGRAM INFORMATION

DISCOVERED MOTIFS


Good Result - Motif

DISCOVERED MOTIFS

Good Result - Positioning


MOTIF LOCATIONS

Timothy L. Bailey and Charles Elkan. "Fitting a mixture model by expectation maximization to discover motifs in biopolymers". Proceedings of the Second


Artefactual Result - Composition

DISCOVERED MOTIFS

MEME tends to favour long compositionally biased motifs Real motifs can be further down the list

Artefactual Result - Duplication

Multiple transcripts with the same promoter Overlapping regions

AME – Known motif search

- Quicker / easier than de-novo discovery
- Limited to characterised binding sites
- Can choose from common motif sources
- Good place to start

Analysis of Motif Enrichment	
Data Submission Form	
Perform standard (non-local) motif enrichment analysis.	
Select the type of control sequences to use ?	
Shuffled input sequences ○ User-provided control sequences ○ NONE	
Select the sequence alphabet	
Use sequences with a standard alphabet or specify a custom alphabet. ?	
O DNA, RNA or Protein O Custom Browse No file selected.	
Input the primary sequences	
Enter the sequences in which you want to find enriched motifs. ?	
Upload sequences v Browse No file selected.	
Input the motifs	
Select a motif database or enter the motifs you wish to test for enrichment.	
Eukaryote DNA V DNA ?	
Vertebrates (In vivo and in silico)	
Select the sequence scoring method Average odds score ?	
Average odds score +	
Select the motif enrichment test	
Fisher's exact test v ?	
Input job details	
(Optional) Enter your email address. ?	
(Optional) Enter a job description. ?	
► Advanced options	
Note: if the combined form inputs exceed 80MB the job will be rejected.	

Clear Input

Start Search

Databases (select category) Eukaryote DNA Prokaryote DNA Methylcytosine DNA JASPAR (NON-REDUNDANT) DNA JASPAR (REDUNDANT) DNA JASPAR COLLECTIONS DNA HOCOMOCO (HUMAN + MOUSE orthologs) DNA TFBSshape DNA CIS-BP 2.00 Single Species DNA CIS-BP 1.02 Single Species DNA ARABIDOPSIS (Arabidopsis thaliana) DNA ECOLI (Escherichia coli) DNA FLY (Drosophila melanogaster) DNA

Databases

JASPAR CORE (2022) JASPAR CORE (2022) vertebrates JASPAR CORE (2022) fungi JASPAR CORE (2022) insects JASPAR CORE (2022) nematodes JASPAR CORE (2022) plants JASPAR CORE (2022) urochordates

AME Result

No additional detail

Could check for positional bias with CentriMo

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme-suite.org.

If you use AME in your research, please cite the following paper: Robert McLeay and Timothy L. Bailey, "Motif Enrichment Analysis: A unified framework and method evaluation", *EMC Bioinformatics*, 11:165, 2010, doi:10.1186/1471-2105-11-165. [full text]

ENRICHED MOTIFS | INPUT FILES | PROGRAM INFORMATION

ENRICHED MOTIFS

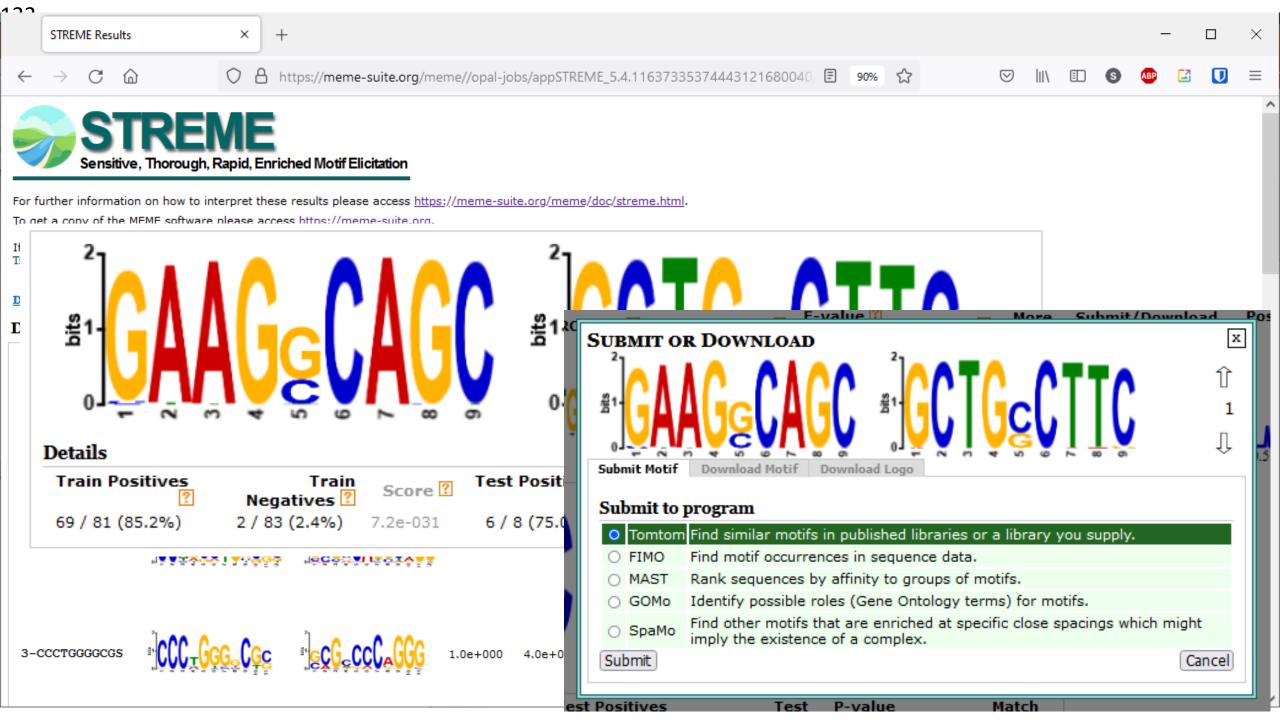
Fixed partition size: number of primary sequences (99)

Sequence motif score: avg_odds Background model source file: motif input file Background model frequencies: 0.25,0.25,0.25,0.25 Total pseudocount added to a motif column: 0.25

Statistical test: Wilcoxon rank-sum test Ranksum method: quick Threshold *p*-value for reporting results: 0.05 Number of multiple tests for Bonferroni correction: #Motifs × #PartitionsTested = 205 × 1 = 205

Beware similar motifs from different factors

motifs	Logo	Database ?	ID ?	Name ?	p-value ?	Adjusted p-value ?
factors		JASPAR CORE 2014 vertebrates	<u>MA0592.1</u>	ESRRA	5.49e-10	1.13e-7
		JASPAR CORE 2014 vertebrates	<u>MA0528.1</u>	ZNF263	5.26e-7	1.08e-4
		JASPAR CORE 2014 vertebrates	<u>MA0160.1</u>	NR4A2	2.73e-6	5.59e-4
\backslash		JASPAR CORE 2014 vertebrates	<u>MA0149.1</u>	EWSR1-FLI1	3.37e-6	6.90e-4
١		JASPAR CORE 2014 vertebrates	<u>MA0141.2</u>	Esrrb	4.99e-6	1.02e-3
	A CAAAGETCA	JASPAR CORE 2014 vertebrates	<u>MA0512.1</u>	Rxra	9.82e-6	2.01e-3


Version 5.4.1

MEME Suite 5.4.1

STREME discovers ungapped motifs (recurring, fixed-length patterns) that are enriched in your sequences or relatively enriched in them compared to your control sequences (sample output from sequences). See this Manual or this Tutorial for more information.

▼Motif Discovery	information.
MEME	Data Submission Form
STREME	
XSTREME	Perform discriminative motif discovery in sequence datasets (including in very large datasets).
MEME-ChIP	The sequences may be in the DNA, RNA or protein alphabet, or in a custom alphabet.
GLAM2	
MoMo	Select the type of control sequences to use
DREME (deprecated)	Shuffled input sequences Subser-provided sequences
Motif Enrichment	Select the sequence alphabet
Motif Scanning	Use sequences with a standard alphabet or specify a custom alphabet.
Motif Comparison	DNA, RNA or Protein O Custom Browse No file selected.
►Gene Regulation	
►Manual	Input the sequences
►Guides & Tutorials	Enter the sequences in which you want to find motifs.
Sample Outputs	Upload sequences V Browse positive_ogi_set.txt DA ?
►File Format Reference	Input the control sequences
►Databases	STREME will find motifs that are enriched relative to these sequences. ?
►Download & Install	Upload sequences V Browse negative_ogi_set.txt
►Help	Convert DNA sequences to RNA?
►Alternate Servers	Convert DNA to RNA ?
Authors & Citing	
►Recent Jobs	Input job details
	(Optional) Enter your email address. ?
• Previous version 5.3.3	
0.3.3	(Optional) Enter a job description. ?
	► Advanced options
	Note: if the combined form inputs exceed 80MB the job will be rejected.
	Start Search Clear Input
	Version 5.4.1 Please send comments and questions to: meme-suite@uw.edu Powered by Opa

Home Documentation Downloads Authors Citing

For further information on how to interpret these results or to get a copy of the MEME software please access http://meme-suite.org.

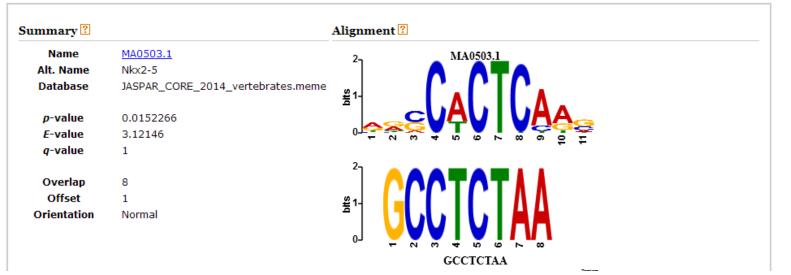
If you use TOMTOM in your research, please cite the following paper: Shobhit Gupta, JA Stamatoyannopolous, Timothy Bailey and William Stafford Noble, "Quantifying similarity between motifs", *Genome Biology*, 8(2):R24, 2007. [full text]

QUERY MOTIFS | TARGET DATABASES | MATCHES | PROGRAM INFORMATION

QUERY MOTIFS

Name ?	Alt. Name ?	Preview ?	Matches ?	List ?
<u>GCCTCTAA</u>	DREME		<u>3</u>	<u>MA0503.1 (Nkx2-5)</u> , <u>MA0122.1 (Nkx3-2)</u> , <u>MA0504.1 (NR2C2)</u>

TARGET DATABASES


Previous Next Top

Next Top

	N 1 (N	AF	
Database ?	Number of Motifs ?	Motifs Matched ?	
JASPAR_CORE_2014_vertebrates.meme	205	3	

MATCHES TO QUERY MOTIF GCCTCTAA (DREME)

Previous Next Top

Motif Searching Exercise

