Analysing 10X Single Cell RNA-Seq Data

v2024-02

Simon Andrews simon.andrews@babraham.ac.uk

Course Outline

- How 10X single cell RNA-Seq works
- Evaluating CellRanger QC

 [Exercise] Looking at CellRanger QC reports
- Dimensionality Reduction (PCA, tSNE, UMAP)
 [Exercise] Using the Loupe cell browser
- R Frameworks for scRNA analysis

 [Exercise] Analysing data in R using Seurat

Gel Beads in Emulsion (GEMs)

Oligo dT UMI (all different) Cell barcode (same within GEM) Priming site

Sample level barcode – same for all cells and RNAs in a library

Cell level barcode (16bp) – same for all RNAs in a cell

UMI (10bp) – unique for one RNA in one cell

10X Produces Barcode Counts

	Sample WT			Sample KO	
Cell WT A	Cell WT B	Cell WT C	Cell KO A	Cell KO B	Cell KO C
UMI UMI UMI UMI UMI UMI UMI	UMI UMI UMI UMI	UMI UMI UMI UMI UMI UMI	UMI UMI UMI UMI	UMI UMI UMI UMI UMI UMI UMI	UMI UMI UMI UMI UMI

UMIs are finally related to genes to get per-gene counts

Extension Techniques

- Variants of the basic protocol which allow for other measures
- Introduce artificial sequences which are measured alongside the normal RNAs
 - Cell Surface Markers
 - CRISPR guide RNAs

- Beads use custom captures (in addition to TTTT)
- Attach sequences to sgRNA or tag to antibodies

The 10X Software Suite

ChromiumCellLoupeControllerRangerBrowser

Runs the chromium system for creating GEMs Pipeline for mapping, filtering, QC and quantitation of libraries Desktop software for visualisation and analysis of single cell data.

Cell Ranger

CellRanger Alternatives

StarSolo gives virtually identical results more quickly, but no Loup integration

Pseudo-alignments are much qui but generate artefacts and won't include intronic data

		Cell Ranger	STARsolo	Alevin	Alevin-fry	Kallisto
- S	Mapping performance	Longest runtime	 Short runtime Comparable results with Cell Ranger 	- Whitelisting causes loss or gain of barcodes	 Faster mapping in comparison with Alevin. Pseudoalignment (sketch mode) further decreases runtime 	 Shortest runtime highest mapping rate
	Barcode correction and filtering			- Detected barcodes that are not in the whitelist	- More barcodes are retained than in Alevin	- Reports more cells
cal oupe	Gene discovery				- Lower detection of Vmn and Olfr gene family than in Alevin	 Highest detection rate of genes Highest UMI count for genes not expressed in studied tissue
quicker, on't	Differences between filtered and unfiltered annotation	- Multi-mapped reads are discarded	 Multi-mapped reads are discarded EM-algorithm can be used (optional) 	- Counts of mullti- mapped reads split with EM- algorithm	 Multi-mapped reads are discarded EM-algorithm can be used (optional) 	 Multi-mapped reads are discarded EM-algorithm can be used (optional)
	Clustering	- Highest Overlap with SCINA classification	- Very similar to Cell Ranger with minor differences	- Cell types contain lower amount of cells with SCINA classification		- High amount of barcodes not detected
GigaScience, 2022, 11, 1–12 DOI: 10.1093/gigascience/giac001 Research	DEG	- No difference detected	- No difference detected	- Lower detection rate than STARsolo and Alevin-fry	- Improved concordance (than Alevin) with Cell Ranger	- Lowest concordance with Cell Ranger
at tools for d John ^{©12.}	Practical Recommendation	- Replacement with STARsolo is recommended	- Recommended as a general purpose mapper		- Pseudoalignment is especially suitable for huge datasets	 Fast mapper qualitative issues with gene detection

Comparative analysis of common alignment too single-cell RNA sequencing

Ralf Schulze Brüning^{1,2}, Lukas Tombor^{1,3}, Marcel H. Schulz^{1,2,3}, Stefanie Dimmeler^{1,2,3} and David John^{1,1}

(GIGA)" SCIENCE

OXFORD

CellRanger Commands

sample

- Barcode reads

• 10bp UMI

- 3' RNA-seq read

Index file. Sets of 4 barcodes per

• 16bp cell level barcode

CellRanger Commands

- CellRanger Count (quantitates a single run)
- $\$ cellranger count --id=COURSE $\$
 - --transcriptome=/bi/apps/cellranger/references/GRCh38/ \
 - --fastqs=/bi/home/andrewss/10X/ \
 - --localcores=8 $\$
 - --localmem=32
- CellRanger aggr (merges multiple runs)
- $\$ cellranger aggr --id=MERGED $\$

--csv=merge_me.csv \

--normalize=mapped

CellRanger Aggregate CSV file

	Required	Opti	onal
ſ		()	
library_id	molecule_h5	sex	genotype
WT1	/data/WT1/outs/molecule_info.h5	Male	WT
WT2	/data/WT2/outs/molecule_info.h5	Female	WT
WT3	/data/WT3/outs/molecule_info.h5	Male	WT
WT4	/data/WT4/outs/molecule_info.h5	Female	WT
КО1	/data/KO1/outs/molecule_info.h5	Male	KO
KO2	/data/KO2/outs/molecule_info.h5	Female	KO
коз	/data/KO3/outs/molecule_info.h5	Male	KO
KO4	/data/KO4/outs/molecule_info.h5	Female	KO

Output files generated

• web_summary.html -

Web format QC report

• filtered_feature_bc_matrix.h5

Single file of cell counts

• possorted_genome_bam.bam

BAM file of mapped reads

• molecule info.h5

Details of the cell barcodes – used for merging, can also use for analysis

• cloupe.cloupe

Analysis data for Loupe Cell browser

Evaluating CellRanger Output

- Look at barcode splitting report
 - Check sample level barcodes

- Look at web_summary.html file
 - Check number of cells
 - Check quality of data
 - Check coverage per cell
 - Check library diversity

Sample Level Barcodes

mES mES(

• Only present if multiple libraries mixed in a lane

- Get standard barcode split report, but with 4 barcodes used per sample
- Even coverage within and between libraries

TCGGCGTC mESCs_grown_on_feeders_in_serum_medium	
CTAAACGG mESCs_grown_on_feeders_in_serum_medium	
AACCGTAA mESCs_grown_on_feeders_in_serum_medium	
GGTTTACT mESCs_grown_on_feeders_in_serum_medium	
GTTGCAGC Gastruloids_at_day_4_of_development	
CAATGGAG Gastruloids_at_day_4_of_development	
ACCCTCCT Gastruloids_at_day_4_of_development	
TGGAATTA Gastruloids_at_day_4_of_development	
ACTGCTCG Gastruloids_at_day_3_of_development	
CTCCTCTA Gastruloids_at_day_3_of_development	
GAAAGGGT Gastruloids_at_day_3_of_development	
TGGTAAAC Gastruloids_at_day_3_of_development	
AACTGGCG Embyroid_bodies_at_day_4_of_development	
CCACTTAT Embyroid_bodies_at_day_4_of_development	
TTGGCATA Embyroid_bodies_at_day_4_of_development	
GGTAACGC Embyroid_bodies_at_day_4_of_development	
CACTCGGA Embryoid_bodies_at_day_5_of_development	
GCTGAATT Embryoid_bodies_at_day_5_of_development	
TGAAGTAC Embryoid_bodies_at_day_5_of_development	
ATGCTCCG Embryoid_bodies_at_day_5_of_development	
TCCGGAAG Embryoid_bodies_at_day_3_of_development	
CAGCATCA Embryoid_bodies_at_day_3_of_development	
AGTTCGGC Embryoid_bodies_at_day_3_of_development	
GTAATCTT Embryoid_bodies_at_day_3_of_development	

Barcodes shown explain 93% of the data

Cell Ranger • count		5,201 Cells (7) Estimated Number of Cells		Cells ⑦ Barcode Rank Plot	rcode Rank Plot 💿 希	
COURS	SE		48,978 Mean Reads per Cell	1,660 Median Genes per Cell	10k \$1000 \$1000 \$1000 \$1000 \$1000	— Cells — Background
Alerts The analysis d	letected 🕢 1 informatio	onal notice.	Sequencing ③	254 736 630		-
Alert	Value Detail		Number of Short Reads Skipped	0	Barcodes	
 Intron mode used 	This data has Ranger versio Please conta	been analyzed with intronic reads in ons. If you would not like to count int ct support@10xgenomics.com for an	Valid Barcodes Valid UMIs	98.3%	Estimated Number of Cells Fraction Reads in Cells	5,201 92.6%
			Q30 Bases in Barcode	97.6%	Mean Reads per Cell	48,978
Summary	Gene Expression		Q30 Bases in RNA Read Q30 Bases in UMI	83.3% 97.5%	Median Genes per Cell Total Genes Detected	1,660
			Mapping ⑦		Sample	25,510
			Reads Mapped to Genome Reads Mapped Confidently to Geno	47.7% me 46.5%	Sample ID	COURSE

		Sample
Reads Mapped to Genome	47.7%	
		Sample ID
Reads Mapped Confidently to Genome	46.5%	Sample Description
Reads Mapped Confidently to Intergenic Regions	1.7%	Chamiotry
Reads Manned Confidently to Intronic Regions	14.0%	Chemistry
Reads mapped confidently to fill offic Regions	14.2%	Include introns
Reads Mapped Confidently to Exonic Regions	30.6%	Deference Dath
Paade Manned Confidently to Transcriptome	22.07	Reference Path
Reads mapped confidently to transcriptome	38.9%	Transcriptome
Reads Mapped Antisense to Gene	5.5%	
		Pipeline Version

Single Cell 3' v2

GRCh38-2020-A

cellranger-7.0.0

...r/references/refdata-gex-GRCh38-2020-A

True

Errors and Warnings

The analysis detected some serious issues with your sequencing run. Details »

The analysis detected some issues with your sequencing run. Details »

Aler	t	Value	Detail
۸	Low Fraction Reads Confidently Mapped To Transcriptome	51.5%	Ideal > 60%. This can indicate use of the wrong reference transcriptome, poor library quality, or poor sequencing quality. Application performance may be affected.

Alerts

The analysis detected 😆 2 errors.

	Alert	Value	Detail
8	Low Fraction Reads Confidently Mapped To Transcriptome	19.6%	Ideal > 30%. This can indicate use of the wrong reference transcriptome, a reference transcriptome with overlapping genes, poor library quality, poor sequencing quality, or reads shorter than the recommended minimum. Application performance may be affected.
8	Low Fraction Reads in Cells	48.8%	Ideal > 70%. Application performance may be affected. Many of the reads were not assigned to cell- associated barcodes. This could be caused by high levels of ambient RNA or by a significant population of cells with a low RNA content, which the algorithm did not call as cells. The latter case can be addressed by inspecting the data to determine the appropriate cell count and usingforce-cells.

How many cells do you have?

• Cell number is determined from the number of cell barcodes with 'reasonable' numbers of observations

 Need to separate signal from background – real cell associated barcodes vs noise from empty GEMs and mis-called sequences

• Changing the thresholds used can give very different predictions for cell numbers

How many cells do you have?

• Start by looking at the quality of the base calls in the barcodes

97.5%

Bad calls will lead to inaccurate cell assignments \bullet

E 201	Sequencing @		
S,201 Estimated Number of Cells	Number of Reads	254,736,630	
	Number of Short Reads Skipped	0	
	Valid Barcodes	98.3%	
	Valid UMIs	100.0%	
	Sequencing Saturation	72.6%	
	Q30 Bases in Barcode	97.6%	
	Q30 Bases in RNA Read	83.3%	
	Q30 Bases in UMI	97.5%	

How many cells do you have

- Plot of UMIs (reads) per cell vs number of cells
- Blue region was called as valid cells
- Grey region is considered
 noise
- Both axes are log scale!!!

How many cells do you have

How much data do you have per cell?

Mean Reads per Cell 11,380

Median Genes per Cell 2,174

Mapping	
Reads Mapped to Genome	95.4%
Reads Mapped Confidently to Genome	90.2%
Reads Mapped Confidently to Intergenic Regions	3.0%
Reads Mapped Confidently to Intronic Regions	12.8%
Reads Mapped Confidently to Exonic Regions	74.4%
Reads Mapped Confidently to Transcriptome	71.9%
Reads Mapped Antisense to Gene	0.9%

Estimated Number of Cells		
Fraction Reads in Cells	88.1%	
Mean Reads per Cell	11,380	
Median Genes per Cell	2,174	
Total Genes Detected	20,185	
Median UMI Counts per Cell	5,742	

- Reads should map well
- Check reads are mostly in transcripts
- Means and medians can be misleading when cells are variable
- Note difference between read and UMI

How much data do you have per cell?

Difficult to generalise how much data to create/expect
 Depends on cell type, genome and other factors

- In general though, sensible numbers would be:
 - Reads per cell ~10,000
 - Genes per cell 2000 3000
- Be aware of the difference between reads (raw) and UMIs (deduplicated) – they can be *very* different

How deeply sequenced is your library

How deeply sequenced is your library

How deeply sequenced is your library

• Expected diversity varies by cell type

Raw Reads per Cell (Thousands)

Figure from 10X Genomics 2018

Is coverage variation affecting your data?

Aggregation QC

Alerts

The analysis detected 🛕 1 warning.

	Alert	Value	Detail
A	Low Post-Normalization Read	47.2%	Ideal > 50%. There may be large differences in sequencing depth across the input libraries.
	Depth		Application performance may be affected.

Aggregation 💿

Pre-Normalization Total Number of Reads	3,430,270,725
Post-Normalization Total Number of Reads	2,502,681,800
Pre-Normalization Mean Reads per Cell	75,074
Post-Normalization Mean Reads per Cell	54,773
Fraction of Reads Kept (Influenza_day1)	100.0%
Fraction of Reads Kept (Influenza_day3)	95.2%
Fraction of Reads Kept (Influenza_day6)	72.9%
Fraction of Reads Kept (Influenza_mock)	47.2%

Pre-Normalization Total Reads per Cell (Influenza_day1)	51,029
Pre-Normalization Total Reads per Cell (Influenza_day3)	50,856
Pre-Normalization Total Reads per Cell (Influenza_day6)	84,665
Pre-Normalization Total Reads per Cell (Influenza_mock)	128,146

Exercise – Evaluating CellRanger Reports

- Look at the selection of CellRanger reports to get an idea for the metrics they provide
 - Is the quality of the data good
 - How many cells are there
 - How much data per cell is there (both UMIs and Genes)
 - Is there any separation? Is it driven by amount of data?
- The data we're going to use for the rest of the day is in "course_web_summary.html", do you see any problems which would concern us with this data at this stage?

Course Data CellRanger QC

The analysis detected some issues. Details »

Alert	Value	Detail
▲ Low Fraction Reads Confidently Mapped To Transcriptome	28.2%	Ideal > 30%. This can indicate use of the wrong reference transcriptome, a reference transcriptome with overlapping genes, poor library quality, poor sequencing quality, or reads shorter than the recommended minimum. Application performance may be affected.

Course Data QC – Read1 (Barcodes)

Course Data QC – Read2 (RNA)

